Abstract

A novel adiabatic mode multiplexer enables a 2×2 optical switch whose operation does not depend on accumulated phase due to evanescent coupling between waveguides. The adiabatic mode multiplexer has a negligible insertion loss over C+L bands and modal cross talk better than 40dB for any polarization state. Mode multiplexing is achieved by adiabatic transition from the fundamental mode of the single-mode waveguide to the higher mode of the multimode waveguide. Experimental measurement results for a device realized in silica-on-silicon technology are presented. By directly measuring the nonadiabatic transition probability, we show that the adiabatic mode multiplexer operates in the Landau–Zener regime.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), p. 159.
  2. E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.
  3. G. Heise and R. Narevich, IEEE Photon. Technol. Lett. 17, 2116 (2005).
    [CrossRef]
  4. M. S. Whalen and T. H. Wood, Electron. Lett. 21, 175 (1985).
    [CrossRef]
  5. R. W.C. Vance and J. D. Love, Electron. Lett. 29, 2134 (1993).
    [CrossRef]
  6. E. Narevicius, “Method and apparatus for optical mode division multiplexing and demultiplexing,” WO 03/100490 patent pending.
  7. M. G.F. Wilson and G. A. Teh, Electron. Lett. 9, 453 (1973).
    [CrossRef]
  8. F. Sporleder and H. G. Unger, Waveguide Tapers Transitions and Couplers (IEE, Peter Peregrinus, 1979).
  9. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
    [CrossRef]
  10. C. R. Doerr, in Optical Fiber Telecommunications IVA (Academic, 2002), p. 427.
  11. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, 1977), p. 344.

2005 (1)

G. Heise and R. Narevich, IEEE Photon. Technol. Lett. 17, 2116 (2005).
[CrossRef]

1993 (1)

R. W.C. Vance and J. D. Love, Electron. Lett. 29, 2134 (1993).
[CrossRef]

1991 (1)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

1985 (1)

M. S. Whalen and T. H. Wood, Electron. Lett. 21, 175 (1985).
[CrossRef]

1973 (1)

M. G.F. Wilson and G. A. Teh, Electron. Lett. 9, 453 (1973).
[CrossRef]

Berlatzky, Y.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Dieckroeger, J.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Doerr, C. R.

C. R. Doerr, in Optical Fiber Telecommunications IVA (Academic, 2002), p. 427.

Heise, G.

G. Heise and R. Narevich, IEEE Photon. Technol. Lett. 17, 2116 (2005).
[CrossRef]

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Krabe, D.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, 1977), p. 344.

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, 1977), p. 344.

Love, J. D.

R. W.C. Vance and J. D. Love, Electron. Lett. 29, 2134 (1993).
[CrossRef]

Moiseyev, N.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Narevich, R.

G. Heise and R. Narevich, IEEE Photon. Technol. Lett. 17, 2116 (2005).
[CrossRef]

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Narevicius, E.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

E. Narevicius, “Method and apparatus for optical mode division multiplexing and demultiplexing,” WO 03/100490 patent pending.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), p. 159.

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Rosenblum, G.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

Shtrichman, I.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Sporleder, F.

F. Sporleder and H. G. Unger, Waveguide Tapers Transitions and Couplers (IEE, Peter Peregrinus, 1979).

Teh, G. A.

M. G.F. Wilson and G. A. Teh, Electron. Lett. 9, 453 (1973).
[CrossRef]

Unger, H. G.

F. Sporleder and H. G. Unger, Waveguide Tapers Transitions and Couplers (IEE, Peter Peregrinus, 1979).

Vance, R. W.C.

R. W.C. Vance and J. D. Love, Electron. Lett. 29, 2134 (1993).
[CrossRef]

Vorobeichik, I.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Wang, S.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Whalen, M. S.

M. S. Whalen and T. H. Wood, Electron. Lett. 21, 175 (1985).
[CrossRef]

Wilson, M. G.F.

M. G.F. Wilson and G. A. Teh, Electron. Lett. 9, 453 (1973).
[CrossRef]

Wood, T. H.

M. S. Whalen and T. H. Wood, Electron. Lett. 21, 175 (1985).
[CrossRef]

Electron. Lett. (3)

M. S. Whalen and T. H. Wood, Electron. Lett. 21, 175 (1985).
[CrossRef]

R. W.C. Vance and J. D. Love, Electron. Lett. 29, 2134 (1993).
[CrossRef]

M. G.F. Wilson and G. A. Teh, Electron. Lett. 9, 453 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Heise and R. Narevich, IEEE Photon. Technol. Lett. 17, 2116 (2005).
[CrossRef]

Other (6)

C. R. Doerr, in Optical Fiber Telecommunications IVA (Academic, 2002), p. 427.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, 1977), p. 344.

F. Sporleder and H. G. Unger, Waveguide Tapers Transitions and Couplers (IEE, Peter Peregrinus, 1979).

E. Narevicius, “Method and apparatus for optical mode division multiplexing and demultiplexing,” WO 03/100490 patent pending.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), p. 159.

E. Narevicius, R. Narevich, I. Vorobeichik, S. Wang, J. Dieckroeger, G. Heise, D. Krabe, Y. Berlatzky, N. Moiseyev, I. Shtrichman, and G. Rosenblum, “Controlled mode interaction based broad-band optical switching unit and VOA in silica-on-silicon,” presented at Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science, Baltimore, Md, May 22–28, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic device layout with modal evolution and far-field images of two modes at the end of the AMM section. Layout scale, 1:175.

Fig. 2
Fig. 2

(Color online) (a) Light propagation in the AMM and the AMDM with a minimal-gap size of 5 μ m . Owing to the nonadiabatic coupling, some of the light remains in the add waveguide. (b) Uncoupled optical power in the add waveguide as function of device length.

Fig. 3
Fig. 3

(Color online) Measured insertion loss and PDL over wavelength.

Fig. 4
Fig. 4

(Color online) Measured insertion loss and PDL as a function of minimal gap.

Fig. 5
Fig. 5

(Color online) Measured insertion loss and PDL as a function of device length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P NA = exp ( π k Δ n 2 2 ( n F + n H ) ) = exp ( π k Δ n 2 Δ L 2 ( Δ n F + Δ n H ) ) ,

Metrics