Abstract

We propose and experimentally demonstrate a single-mode fiber length and dispersion measurement system based on what we believe to be a novel frequency-shifted asymmetric Sagnac interferometer incorporating an acousto-optic modulator (AOM). By sweeping the driving frequency of the AOM, which is asymmetrically placed in the Sagnac loop, the optical length of the fiber can be determined by measuring the corresponding variation in the phase delay between the two counterpropagating light beams. Combined with a high-resolution data processing algorithm, this system yields a dynamic range from a few centimeters to 60km (limited by our availability of long fibers) with a resolution of 1  partpermillion for long fibers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
    [CrossRef]
  2. K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
    [CrossRef]
  3. M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, Appl. Opt. 16, 2375 (1977).
    [CrossRef] [PubMed]
  4. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987).
    [CrossRef] [PubMed]
  5. R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
    [CrossRef]
  6. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
    [CrossRef]
  7. A. P. Coutzoulis and D. R. Pape, eds., Design and Fabrication of Acousto-Optics Devices (Dekker, 1994).
  8. D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]
  9. P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
    [CrossRef]

2003 (1)

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

2002 (1)

K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
[CrossRef]

1995 (1)

Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
[CrossRef]

1994 (1)

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

1989 (1)

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

1988 (1)

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

1987 (1)

1977 (1)

Allen, C.

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

Barnoski, M. K.

Carr, S.

Davies, D. E. N.

Fu, B.

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

Gao, S.

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Gisin, N.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Hui, R.

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

Jackson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Jensen, S. M.

Jeon, K. S.

K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
[CrossRef]

Kang, D. S.

K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
[CrossRef]

Kim, H. J.

K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
[CrossRef]

Melville, R. T.

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Pan, J. K.

K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
[CrossRef]

Passy, R.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Rourke, M. D.

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Thomas, J.

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

von der Weid, J. P.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Youngquist, R. C.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

K. S. Jeon, H. J. Kim, D. S. Kang, and J. K. Pan, IEEE Photon. Technol. Lett. 14, 1145 (2002).
[CrossRef]

R. Hui, J. Thomas, C. Allen, B. Fu, and S. Gao, IEEE Photon. Technol. Lett. 15, 96 (2003).
[CrossRef]

J. Lightwave Technol. (4)

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. P. Coutzoulis and D. R. Pape, eds., Design and Fabrication of Acousto-Optics Devices (Dekker, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Frequency-shifted asymmetric Sagnac interferometer for fiber length measurement.

Fig. 2
Fig. 2

Length measurement results: 엯, calibrated by Agilent 86037C chromatic dispersion test system; *, calibrated by tape measure. The solid line is X = Y . Fiber refractive index n = 1.4682 (SMF28).

Fig. 3
Fig. 3

Resolution of our system: the circles indicate twice the standard deviations measured at different fiber lengths; the solid curve corresponds to Eq. (10) with the parameters L 0 = 100 m , f 0 = 53 MHz , f k = 50 MHz , f k + N = 56 MHz , Δ f 0 f 0 = 5 × 10 8 , and δ ϕ = 4 × 10 4 .

Fig. 4
Fig. 4

Chromatic dispersion measurement for a 20 km SMF28 fiber: Solid line, our system; dashed line, Agilent 86037C chromatic dispersion test system.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V = ( 1 m cos ϕ ) ( m + 1 ) ,
Δ λ λ 2 = f C ,
ϕ 1 = 2 π n L 1 λ + 2 π n L λ + 2 π n L 2 λ ,
ϕ 2 = 2 π n L 2 λ + 2 π n L λ + 2 π n L 1 λ + ϕ 0 ,
V = { 1 m cos [ 2 π n f ( L + L 0 ) C + ϕ 0 ] } ( m + 1 ) ,
f k = ( 2 k π ϕ 0 ) C [ 2 π n ( L + L 0 ) ] .
f k + N f k = N C [ n ( L + L 0 ) ] .
L = N C [ n ( f k + N f k ) ] L 0 .
Δ f = Δ f 0 + Δ f ϕ .
Δ f ϕ = { C [ 2 π n ( L + L 0 ) ] } δ ϕ .
Δ L L 2 [ f 0 ( f k + N f k ) ] [ ( L + L 0 ) L ] ( Δ f f 0 ) = 2 f 0 f k + N f k L + L 0 L Δ f 0 f 0 + C 2 π n L ( f k + N f k ) δ ϕ .
D ( λ ) = ( τ λ ) L .

Metrics