Abstract

A distributed sensor system for detecting and locating intruders based on a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) that utilizes polarization discrimination is described. The sensing element is a single-mode telecommunications fiber in a 3 mm diameter cable buried along a monitored perimeter in a 20–46 cm deep, 10 cm wide trench in clay soil. Light pulses from a continuous-wave Er fiber Fabry–Perot laser with a narrow (<3kHz) instantaneous linewidth and low (a few Kilohertz per second) frequency drift are injected into one end of the fiber, and the orthogonal polarizations of the backscattered light are monitored with separate receivers. Localized phase changes in the optical carrier are sensed by subtraction of a ϕ-OTDR trace from an earlier stored trace. In field tests with a monitored length of 12 km, detection of intruders on foot as far as 4.5 m from the cable line was consistently achieved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski and S. M. Jensen, Appl. Opt. 15, 2112 (1976).
    [CrossRef] [PubMed]
  2. B. Costa and B. Sordo, in Digest of 3rd European Conference on Optical Communication (1977), p. 69.
  3. M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, Appl. Opt. 16, 2375 (1977).
    [CrossRef] [PubMed]
  4. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent 5,194,847 (March 16, 1993).
  5. K. N. Choi, J. C. Juarez, and H. F. Taylor, in Proc. SPIE 5090, 134 (2003).
    [CrossRef]
  6. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
    [CrossRef]
  7. A. H. Hartog and M. P. Gold, J. Lightwave Technol. 2, 76 (1984).
    [CrossRef]
  8. K. N. Choi and H. F. Taylor, IEEE Photon. Technol. Lett. 15, 386 (2003).
    [CrossRef]

2005 (1)

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
[CrossRef]

2003 (2)

K. N. Choi, J. C. Juarez, and H. F. Taylor, in Proc. SPIE 5090, 134 (2003).
[CrossRef]

K. N. Choi and H. F. Taylor, IEEE Photon. Technol. Lett. 15, 386 (2003).
[CrossRef]

1984 (1)

A. H. Hartog and M. P. Gold, J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

1977 (1)

1976 (1)

Barnoski, M. K.

Choi, K. N.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
[CrossRef]

K. N. Choi, J. C. Juarez, and H. F. Taylor, in Proc. SPIE 5090, 134 (2003).
[CrossRef]

K. N. Choi and H. F. Taylor, IEEE Photon. Technol. Lett. 15, 386 (2003).
[CrossRef]

Costa, B.

B. Costa and B. Sordo, in Digest of 3rd European Conference on Optical Communication (1977), p. 69.

Gold, M. P.

A. H. Hartog and M. P. Gold, J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Hartog, A. H.

A. H. Hartog and M. P. Gold, J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Jensen, S. M.

Juarez, J. C.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
[CrossRef]

K. N. Choi, J. C. Juarez, and H. F. Taylor, in Proc. SPIE 5090, 134 (2003).
[CrossRef]

Lee, C. E.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent 5,194,847 (March 16, 1993).

Maier, E. W.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
[CrossRef]

Melville, R. T.

Rourke, M. D.

Sordo, B.

B. Costa and B. Sordo, in Digest of 3rd European Conference on Optical Communication (1977), p. 69.

Taylor, H. F.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
[CrossRef]

K. N. Choi, J. C. Juarez, and H. F. Taylor, in Proc. SPIE 5090, 134 (2003).
[CrossRef]

K. N. Choi and H. F. Taylor, IEEE Photon. Technol. Lett. 15, 386 (2003).
[CrossRef]

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent 5,194,847 (March 16, 1993).

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

K. N. Choi and H. F. Taylor, IEEE Photon. Technol. Lett. 15, 386 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 6, 2081 (2005).
[CrossRef]

A. H. Hartog and M. P. Gold, J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Proc. SPIE (1)

K. N. Choi, J. C. Juarez, and H. F. Taylor, in Proc. SPIE 5090, 134 (2003).
[CrossRef]

Other (2)

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent 5,194,847 (March 16, 1993).

B. Costa and B. Sordo, in Digest of 3rd European Conference on Optical Communication (1977), p. 69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the fiber laser used as the light source in the ϕ-OTDR sensor system.

Fig. 2
Fig. 2

Field test setup for characterizing the ϕ-OTDR sensor system.

Fig. 3
Fig. 3

(Color online) (a) ϕ-OTDR trace for linearly polarized light acquired before and after an 80 kg person has stepped on the ground above the sensor; (b) the same as (a) but for orthogonal linear polarization; (c) sum of traces in (a) and (b). In each case, the difference of the two waveforms is also given.

Fig. 4
Fig. 4

(Color online) Temporal response of ϕ-OTDR data in a 2 km range as a person walking in a direction perpendicular to the cable line approaches it and steps over it. The two traces correspond to orthogonal polarizations of the detected light. The first observed step is 4.5 m from the buried cable.

Metrics