Abstract

We propose a highly efficient approach to generating multihelix beams that contain more than one helical mode, and the power distribution over helical modes is adjustable. A multihelix beam embedded with three collinear helical modes is demonstrated by use of a spatial light modulator.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef] [PubMed]
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
    [CrossRef] [PubMed]
  3. J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef]
  4. J. Lin, X.-C. Yuan, S. H. Tao, X. Peng, and H. B. Niu, Opt. Express 13, 3862 (2005).
    [CrossRef] [PubMed]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
    [CrossRef] [PubMed]
  6. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
    [CrossRef] [PubMed]
  7. Z. Bouchal and R. Celechovsky, New J. Phys. 6, 131 (2004).
    [CrossRef]
  8. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
    [CrossRef] [PubMed]
  9. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Opt. Express 12, 4129 (2004).
    [CrossRef] [PubMed]
  10. D. W. Zhang and X.-C. Yuan, Opt. Lett. 28, 1864 (2003).
    [CrossRef] [PubMed]
  11. B. Picinbono, IEEE Trans. Signal Process. 45, 552 (1997).
    [CrossRef]
  12. H. Farhoosh, M. R. Feldman, S. H. Lee, C. C. Guest, Y. Fainman, and R. Eschbach, Appl. Opt. 26, 4361 (1987).
    [CrossRef] [PubMed]
  13. K. Heggarty and R. Chevallier, J. Opt. Soc. Am. A 15, 625 (1998).
    [CrossRef]
  14. E. Noponen and J. Turunen, J. Opt. Soc. Am. A 13, 1422 (1996).
    [CrossRef]
  15. V. Arrizon, Opt. Lett. 28, 2521 (2003).
    [CrossRef]
  16. R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237–246 (1982).
  17. G. F. Schils and D. W. Sweeney, J. Opt. Soc. Am. A 3, 1433 (1986).
    [CrossRef]
  18. M. J. Padgett and L. Allen, Opt. Commun. 121, 36–40 (1995).
    [CrossRef]
  19. Z. Bouchal, O. Haderka, and R. Celechovsky, New J. Phys. 7, 125 (2005).
    [CrossRef]

2005 (2)

2004 (3)

2003 (3)

2002 (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

B. Picinbono, IEEE Trans. Signal Process. 45, 552 (1997).
[CrossRef]

1996 (1)

1995 (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

M. J. Padgett and L. Allen, Opt. Commun. 121, 36–40 (1995).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

1982 (1)

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237–246 (1982).

Allen, L.

M. J. Padgett and L. Allen, Opt. Commun. 121, 36–40 (1995).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Arrizon, V.

Barnett, S. M.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Bernet, S.

Bouchal, Z.

Z. Bouchal, O. Haderka, and R. Celechovsky, New J. Phys. 7, 125 (2005).
[CrossRef]

Z. Bouchal and R. Celechovsky, New J. Phys. 6, 131 (2004).
[CrossRef]

Celechovsky, R.

Z. Bouchal, O. Haderka, and R. Celechovsky, New J. Phys. 7, 125 (2005).
[CrossRef]

Z. Bouchal and R. Celechovsky, New J. Phys. 6, 131 (2004).
[CrossRef]

Chevallier, R.

Courtial, J.

Curtis, J. E.

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Eschbach, R.

Fainman, Y.

Farhoosh, H.

Feldman, M. R.

Franke-Arnold, S.

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Furhapter, S.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237–246 (1982).

Gibson, G.

Grier, D. G.

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Guest, C. C.

Haderka, O.

Z. Bouchal, O. Haderka, and R. Celechovsky, New J. Phys. 7, 125 (2005).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Heggarty, K.

Jesacher, A.

Lee, S. H.

Lin, J.

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Niu, H. B.

Noponen, E.

Padgett, M. J.

Pas’ko, V.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Peng, X.

Picinbono, B.

B. Picinbono, IEEE Trans. Signal Process. 45, 552 (1997).
[CrossRef]

Ritsch-Marte, M.

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237–246 (1982).

Schils, G. F.

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Sweeney, D. W.

Tao, S. H.

Turunen, J.

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Yuan, X.-C.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Zhang, D. W.

Appl. Opt. (1)

IEEE Trans. Signal Process. (1)

B. Picinbono, IEEE Trans. Signal Process. 45, 552 (1997).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

New J. Phys. (2)

Z. Bouchal and R. Celechovsky, New J. Phys. 6, 131 (2004).
[CrossRef]

Z. Bouchal, O. Haderka, and R. Celechovsky, New J. Phys. 7, 125 (2005).
[CrossRef]

Opt. Commun. (1)

M. J. Padgett and L. Allen, Opt. Commun. 121, 36–40 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (Stuttgart) (1)

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237–246 (1982).

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, Science 296, 1101 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Power spectrum of the ideal transmittance f ( θ ) . (b) Power spectrum of initial transmittance g ( θ ) , which neglects the amplitude modulation part of f ( θ ) . (c) Power spectrum of convergent transmittance g ( θ ) ; i and j ( i , j l m , m = 1 , 2 , , n ) denote the additional topological charges introduced by the process.

Fig. 2
Fig. 2

Numerical simulations of the DOEs. (a) Power spectrum of the phase-only transmittance. (b) Intensity pattern of reconstructed field diffracted from the approximate phase-only DOEs. (c) Reconstructed intensity pattern generated by the ideal complex DOE.

Fig. 3
Fig. 3

(b) Observed intensity pattern at the laser power of 10 mW . The corresponding azimuthal modulated phase function is shown in (a).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ( θ ) = m = 1 n A m exp ( i l m θ )
f ( θ ) = m = A m exp ( i m θ ) ,
m = m = A m A m * exp [ i ( m m ) θ ] = C 2 ,
ψ ( θ ) = Re { i ln [ m = C m exp ( i m θ ) ] } ,
g ( θ ) = m = B m exp ( i m θ ) ,

Metrics