Abstract

The decoherence of Rabi oscillation (RO) caused by biexciton, population leakage to the wetting layer (WL), and Auger capture in semiconductor quantum dots is theoretically analyzed with multilevel optical Bloch equations. The corresponding effects on the quality factor of RO are also discussed. We have found that the biexciton effect is relatively trifling, as the pulse duration is longer than 5 ps. The population leakage to the WL leads to a decrease of the RO average even though the damping rate is similar to that observed in the experiment. Auger capture in quantum dots results in RO damping that is consistent with the experimental data, which implies that Auger capture is an important decoherence process in quantum dots.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity of quantum-dot semiconductor lasers to optical feedback

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov
Opt. Lett. 29(10) 1072-1074 (2004)

Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots

Runze Chen, Xin Zheng, and Tian Jiang
Opt. Express 25(7) 7507-7519 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription