Abstract

We demonstrate ultrafast all-optical deflection of spatial solitons in an AlxGa1xAs slab waveguide, using 190fs, 1550nm pulses to generate and deflect the spatial soliton. The steering beam is focused onto the top of the waveguide near the soliton pathway, and the soliton is steered by refractive-index changes induced by optical Kerr, or free-carrier (Drude), effects. Angular deflections up to 8mrad are observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Trillo and W. Toruellas, eds., Spatial Solitons, Vol. 82 of Springer Series in Optical Sciences (Springer-Verlag, 2001).
    [CrossRef]
  2. S. Blair and K. Wagner, Appl. Opt. 38, 6749 (1999).
    [CrossRef]
  3. T.-T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
    [CrossRef] [PubMed]
  4. J. U. Kang, G. I. Stegeman, and J. S. Aitchison, Opt. Lett. 21, 189 (1996).
    [CrossRef] [PubMed]
  5. W. Haas, R. Johannes, and P. Cholet, Appl. Opt. 3, 988 (1964).
    [CrossRef]
  6. S. Shwartz, M. Segev, and U. El-Hannay, Opt. Lett. 29, 760 (2004).
    [CrossRef] [PubMed]
  7. Y. Li, D. Y. Chen, L. Yang, and R. R. Alfano, Opt. Lett. 16, 438 (1991).
    [CrossRef] [PubMed]
  8. G. Roosen and G. T. Sincerbox, J. Appl. Phys. 54, 1628 (1983).
    [CrossRef]
  9. P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
    [CrossRef]
  10. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
    [CrossRef]
  11. B. S. Wherrett, J. Opt. Soc. Am. B 1, 67 (1984).
    [CrossRef]
  12. T. G. Ulmer, R. K. Tan, Z. Zhou, S. E. Ralph, R. P. Kenan, C. M. Verber, and A. J. SpringThorpe, Opt. Lett. 24, 756 (1999).
    [CrossRef]
  13. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).
    [CrossRef]
  14. L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, Opt. Lett. 23, 1438 (1998).
    [CrossRef]

2004

1999

1998

1997

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

1996

1994

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
[CrossRef]

1991

1990

1984

1983

G. Roosen and G. T. Sincerbox, J. Appl. Phys. 54, 1628 (1983).
[CrossRef]

1964

Aitchison, J. S.

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, Opt. Lett. 23, 1438 (1998).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, and J. S. Aitchison, Opt. Lett. 21, 189 (1996).
[CrossRef] [PubMed]

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
[CrossRef]

Alfano, R. R.

Blair, S.

Chen, D. Y.

Chi, S.

Cholet, P.

El-Hannay, U.

Friedrich, L.

Haas, W.

Hamilton, C. J.

Hasegawa, A.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

Johannes, R.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, and J. S. Aitchison, Opt. Lett. 21, 189 (1996).
[CrossRef] [PubMed]

Kenan, R. P.

Li, Y.

Mamyshev, P. V.

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
[CrossRef]

Matsumoto, M.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).
[CrossRef]

Millar, P.

Ralph, S. E.

Roosen, G.

G. Roosen and G. T. Sincerbox, J. Appl. Phys. 54, 1628 (1983).
[CrossRef]

Segev, M.

Shi, T.-T.

Shwartz, S.

Sincerbox, G. T.

G. Roosen and G. T. Sincerbox, J. Appl. Phys. 54, 1628 (1983).
[CrossRef]

SpringThorpe, A. J.

Stegeman, G. I.

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, Opt. Lett. 23, 1438 (1998).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, and J. S. Aitchison, Opt. Lett. 21, 189 (1996).
[CrossRef] [PubMed]

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
[CrossRef]

Tan, R. K.

Ulmer, T. G.

Verber, C. M.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
[CrossRef]

Wagner, K.

Wherrett, B. S.

Yang, L.

Zhou, Z.

Appl. Opt.

Electron. Lett.

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Electron. Lett. 30, 726 (1994).
[CrossRef]

IEEE J. Quantum Electron.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. Appl. Phys.

G. Roosen and G. T. Sincerbox, J. Appl. Phys. 54, 1628 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

S. Trillo and W. Toruellas, eds., Spatial Solitons, Vol. 82 of Springer Series in Optical Sciences (Springer-Verlag, 2001).
[CrossRef]

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principle of the soliton-deflection technique: The spatial soliton formed within the waveguide layer is deflected by a localized refractive-index change induced by a pump beam normally incident onto the waveguide.

Fig. 2
Fig. 2

Center position of the soliton intensity distribution emerging from the exit facet versus the time delay, Δ t , between the soliton-forming and pump ultrashort laser pulses. Inset, the intensity profiles at the exit facet at Δ t = 1 ps (solid curve), Δ t = 0 (dashed curve), and Δ t = 3 ps (dotted curve).

Fig. 3
Fig. 3

Scaling of Kerr- and carrier-induced deflection magnitude measured with a position-sensitive device.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 A ( x , z ) x 2 + n 2 η 0 k 2 A ( x , z ) 2 A ( x , z ) = 2 i k A ( x , z ) z ,
A ( x , z ) = A 0 sech ( x W 0 ) exp ( i z 2 k W 0 2 ) ,
ϕ ( x , z ) x 2 π λ n x x 0 = 2 π λ 2 e n 2 I 0 w 0 exp [ ( z z 0 ) 2 w 0 2 ] .
A ( x , z ) = A 0 sech ( x θ z W 0 ) exp ( i z 1 k 2 k W 0 2 θ 2 2 k W 0 2 i x k θ ) ,
W 0 W 0 k θ d x = 2 W 0 k θ
ϕ ( x , z ) x d z = ( 2 π ) 3 2 λ e 1 2 n 2 I 0 w 0 .
θ 1 2 ( 2 π e ) 1 2 w 0 W 0 n 2 I 0 n 0 .

Metrics