Abstract

We report a novel diffuse optical spectroscopy probe design for determining optical properties of superficial volumes of turbid samples. The fiber-based probe employs a highly scattering layer placed in contact with the sample of interest. This layer diffuses photons from a collimated light source before they enter the sample and provides a basis for describing light transported in superficial media by the diffusion approximation. We compare the performance of this modified two-layer diffusion model with Monte Carlo simulations. A set of experiments that demonstrate the feasibility of this method in turbid tissue phantoms is also presented. Optical properties deduced by this approach are in good agreement with those derived by use of a benchmark method for determining optical properties. The average interrogation depth of the probe design investigated here is estimated to be less than 1 mm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, Appl. Opt. 39, 6498 (2000).
    [CrossRef]
  2. J. Swartling, J. S. Dam, and S. Andersson-Engels, Appl. Opt. 42, 4612 (2003).
    [CrossRef] [PubMed]
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  4. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, J. Opt. Soc. Am. A 11, 2727 (1994).
    [CrossRef]
  5. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
    [CrossRef] [PubMed]
  6. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. Van Den Bergh, Appl. Opt. 37, 779 (1998).
    [CrossRef]
  7. S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

2003

2000

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, Appl. Opt. 39, 6498 (2000).
[CrossRef]

1998

1994

Alianelli, L.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

Andersson-Engels, S.

Bassani, M.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

Bays, R.

Berger, A. J.

Bevilacqua, F.

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, Appl. Opt. 39, 6498 (2000).
[CrossRef]

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Cerussi, A. E.

Cuccia, D.

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Dam, J. S.

Dognitz, N.

Durkin, A. J.

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Fedyk, A. G.

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Feng, T. C.

Haskell, R. C.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Jakubowski, D.

Kienle, A.

Martelli, F.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

Mcadams, M. S.

Patterson, M. S.

Svaasand, L. O.

Swartling, J.

Tromberg, B. J.

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, Appl. Opt. 39, 6498 (2000).
[CrossRef]

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Tsay, T. T.

Tseng, S.

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Van Den Bergh, H.

Wagnieres, G.

Wilder-Smith, P.

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Zaccanti, G.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

Zangheri, L.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Phys. Med. Biol.

F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, Phys. Med. Biol. 45, 1359 (2000).
[CrossRef] [PubMed]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

S. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Fedyk, and B. J. Tromberg, presented at the Engineering Foundation Conference, Banff, Canada, September 1–5, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Typical DOS and (b) modified two-layer measurement geometries.

Fig. 2
Fig. 2

(a) Amplitude and (b) phase versus source modulation frequencies generated from a MTL diffusion model (solid curve) and a Monte Carlo simulation (asterisks). See text for parameters used. Monte Carlo simulation results (squares) were generated with a layered sample composed of a 2 mm thick layer ( μ a 2 = 0.04 mm , μ s 2 = 0.7 mm ) with an underlying semi-infinite layer ( μ a 3 = 0.08 mm , μ s 3 = 1.4 mm ) .

Fig. 3
Fig. 3

(a) Reduced scattering coefficients μ s and (b) absorption coefficients μ a of the liquid phantom recovered from infinite-medium (asterisks), MTL (circles), and 5 mm semi-infinite (triangles) measurements at six wavelengths.

Tables (1)

Tables Icon

Table 1 Benchmark Optical Properties at 661 nm of Five Liquid Phantoms and Deviations of Optical Properties Determined by Use of MTL Measurements from Benchmark Values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ 2 ( z , Q ) = sinh [ α 1 ( z b + z 0 ) ] exp [ α 2 ( l z ) ] D 1 α 1 cosh [ α 1 ( l + z b ) ] + D 2 α 2 sinh [ α 1 ( l + z b ) ] ,
ϕ 2 ( z , Q ) = Φ 2 ( x , y , z ) exp [ i ( Q 1 x + Q 2 y ) ] d x d y ,
α 2 2 = ( D 2 Q 2 + μ a 2 + j ω c 2 ) D 2 ,

Metrics