Abstract

Intermodal dispersion between the supermodes of a directional coupler may induce undesirable pulse breakup in a sufficiently large device. When this happens the device will no longer exchange power between its arms, and the extinction ratio is completely canceled. It is shown that, by carefully designing the coupling area of the directional coupler, one may compensate for intermodal dispersion. The compensating device should accomplish three basic requirements: inverse intermodal dispersion, balanced coupling of each supermode, and maximum power transfer while preserving the sign of the slope of the coupling coefficient with frequency for multiplexing–demultiplexing applications. This structure is designed and optimized with a genetic algorithm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. A. Martinez, F. Cuesta, and J. Martí, IEEE Photon. Technol. Lett. 15, 694 (2003).
    [CrossRef]
  3. F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, Opt. Express 12, 161 (2004).
    [CrossRef] [PubMed]
  4. K. S. Chiang, Opt. Lett.,  20, 997 (1995).
    [CrossRef]
  5. C. M. Sterke, L. C. Botten, A. Asatryan, T. P. White, and R. C. McPhedran, Opt. Lett. 29, 1384 (2004).
    [CrossRef]
  6. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, Opt. Express 12, 1990 (2004).
    [CrossRef] [PubMed]
  7. L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
    [CrossRef]
  8. Y. Tsuji and M. Koshiba, J. Lightwave Technol. 20, 463, (2002).
    [CrossRef]

2004 (4)

2003 (1)

A. Martinez, F. Cuesta, and J. Martí, IEEE Photon. Technol. Lett. 15, 694 (2003).
[CrossRef]

2002 (1)

1995 (1)

Asatryan, A.

Bigot, L.

Blasco, J.

Botten, L. C.

Bravo-Abad, J.

L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
[CrossRef]

Chiang, K. S.

Cuesta, F.

A. Martinez, F. Cuesta, and J. Martí, IEEE Photon. Technol. Lett. 15, 694 (2003).
[CrossRef]

Cuesta-Soto, F.

Douay, M.

García, J.

Hakanson, A.

L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Kerrinckx, E.

Koshiba, M.

López-Zanón, D.

L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
[CrossRef]

Martí, J.

Martinez, A.

A. Martinez, F. Cuesta, and J. Martí, IEEE Photon. Technol. Lett. 15, 694 (2003).
[CrossRef]

Martínez, A.

McPhedran, R. C.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Quiquempois, Y.

Ramos, F.

Sanchez-Dehesa, J.

L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
[CrossRef]

Sanchis, L.

L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
[CrossRef]

Sanchis, P.

Sterke, C. M.

Tsuji, Y.

White, T. P.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Appl. Phys. Lett. (1)

L. Sanchis, A. Hakanson, D. López-Zanón, J. Bravo-Abad, and J. Sanchez-Dehesa, Appl. Phys. Lett. 84, 22, 4460 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Martinez, F. Cuesta, and J. Martí, IEEE Photon. Technol. Lett. 15, 694 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (2)

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion band diagram of a conventional PhC directional coupler. Insets, amplitude profiles of the even and odd supermodes and the supercell used for the calculations, which consists of a hexagonal lattice with high-index rods ( r = 0.2 a , r c = 0.14 , n H = 3.46 ) embedded in a low refractive index medium ( n L = 1.45 ) .

Fig. 2
Fig. 2

Group velocities of the even (dashed curve) and the odd (solid curve) supermodes of the conventional PhC directional coupler introduced in Fig. 1. Inset, group delay difference per period.

Fig. 3
Fig. 3

Dispersion band diagram of the dispersion-compensating PhC directional coupler. Inset, supercell used for the calculations. It consists of the same hexagonal structure as shown in Fig. 1. The defect rows are separated by three central rods with radius r A = r B = 0.3 a . The separation s between the central rods is a 3 2 .

Fig. 4
Fig. 4

Group velocities of the even (dashed curve) and the odd (solid curve) supermodes of the conventional PhC directional coupler introduced in Fig. 2. The vertical dotted line corresponds to the frequency where the even and odd supermodes cross in the dispersion diagram. Inset, group delay difference per period.

Fig. 5
Fig. 5

Coupling zone between the conventional PhC directional coupler and the dispersion stage. The radii of the shaded rods after optimization are r 1 = 0.144 a , r 2 = 0.208 a , r 3 = 0.11 a , r 4 = 0.202 a , r 5 = 0.138 a , r 6 = 0.254 a , r 7 = 0.201 a , r 8 = 0.172 a , and r 9 = 0.207 a .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = [ 2 × ( P e + P o ) ] 2 20 × P e P o .

Metrics