Abstract

We present a new design for beam splitting components employing a silicon-on-insulator rib waveguide structures. In the new design, a high-index thin-film layer is deposited in the rib section to reduce the wave field dispersive tails in the slab section and accordingly render the mode field a confined spot. This in turn improves the beam splitting performance of some conventional waveguide components such as y branches and multimode interference couplers (MMICs), in terms of the excess loss, fiber coupling loss, and compactness of these components. For a 1×2 y-branch beam splitter, the excess loss can be as small as 0.43dB in the new design, which is much lower than that for a conventional rib waveguide structure (which is 1.28dB). For a 1×2 MMIC in our example, the new rib waveguide structure presents an excess loss of 0.064dB for the TE mode and 0.046dB for the TM mode, with negligible nonuniformity in dimensions of 30μm×1040μm, whereas its counterpart (i.e., the one with the same dimensions but without a thin-film layer) presents an excess loss of 0.86dB for both modes. A conventional MMIC must have dimensions larger than 70μm×5650μm to maintain almost the same low excess loss.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Rickman and G. T. Reed, IEE Proc.: Optoelectron. 141, 391 (1994).
    [Crossref]
  2. A. G. Rickman, G. T. Reed, and F. Namavar, J. Lightwave Technol. 12, 1771 (1994).
    [Crossref]
  3. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
    [Crossref]
  4. G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
    [Crossref]
  5. E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
    [Crossref]
  6. M. Fritze, J. Knecht, C. Bozler, and C. Keast, in IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, 2002), pp. 165–166.
    [Crossref]
  7. L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
    [Crossref]
  8. R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
    [Crossref]
  9. U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
    [Crossref]
  10. S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

2003 (2)

E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
[Crossref]

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

1998 (1)

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

1997 (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[Crossref]

1996 (1)

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

1994 (2)

A. G. Rickman and G. T. Reed, IEE Proc.: Optoelectron. 141, 391 (1994).
[Crossref]

A. G. Rickman, G. T. Reed, and F. Namavar, J. Lightwave Technol. 12, 1771 (1994).
[Crossref]

1992 (1)

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[Crossref]

Arndt, F.

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

Balk, P.

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

Bozler, C.

M. Fritze, J. Knecht, C. Bozler, and C. Keast, in IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, 2002), pp. 165–166.
[Crossref]

Bullough, R.

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

Cassan, E.

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
[Crossref]

Cocorullo, G.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

Corte, F. G. D.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[Crossref]

Fischer, U.

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

Fritze, M.

M. Fritze, J. Knecht, C. Bozler, and C. Keast, in IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, 2002), pp. 165–166.
[Crossref]

Gosling, T. J.

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

Iodice, M.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[Crossref]

Jain, S. C.

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

Keast, C.

M. Fritze, J. Knecht, C. Bozler, and C. Keast, in IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, 2002), pp. 165–166.
[Crossref]

Knecht, J.

M. Fritze, J. Knecht, C. Bozler, and C. Keast, in IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, 2002), pp. 165–166.
[Crossref]

Koster, A.

E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
[Crossref]

Kroop, J.-R.

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

Lardenois, S.

E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
[Crossref]

Laval, S.

E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
[Crossref]

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

Le Roux, X.

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

Namavar, F.

A. G. Rickman, G. T. Reed, and F. Namavar, J. Lightwave Technol. 12, 1771 (1994).
[Crossref]

Pascal, D.

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

Petermann, K.

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[Crossref]

Reed, G. T.

A. G. Rickman and G. T. Reed, IEE Proc.: Optoelectron. 141, 391 (1994).
[Crossref]

A. G. Rickman, G. T. Reed, and F. Namavar, J. Lightwave Technol. 12, 1771 (1994).
[Crossref]

Rendina, I.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

Rickman, A. G.

A. G. Rickman and G. T. Reed, IEE Proc.: Optoelectron. 141, 391 (1994).
[Crossref]

A. G. Rickman, G. T. Reed, and F. Namavar, J. Lightwave Technol. 12, 1771 (1994).
[Crossref]

Sarro, P. M.

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[Crossref]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[Crossref]

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[Crossref]

Vivien, L.

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

Willis, J. R.

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[Crossref]

Zinke, T.

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

IEE Proc.: Optoelectron. (1)

A. G. Rickman and G. T. Reed, IEE Proc.: Optoelectron. 141, 391 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Cocorullo, F. G. D. Corte, M. Iodice, I. Rendina, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 4, 983 (1998).
[Crossref]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, IEEE J. Sel. Top. Quantum Electron. 9, 460 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

U. Fischer, T. Zinke, J.-R. Kroop, F. Arndt, and K. Petermann, IEEE Photonics Technol. Lett. 8, 647 (1996).
[Crossref]

J. Lightwave Technol. (3)

L. Vivien, S. Laval, E. Cassan, X. Le Roux, and D. Pascal, J. Lightwave Technol. 21, 1 (2003).
[Crossref]

A. G. Rickman, G. T. Reed, and F. Namavar, J. Lightwave Technol. 12, 1771 (1994).
[Crossref]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[Crossref]

Solid-State Electron. (1)

S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron. 35, 10731 (1992).

Other (1)

M. Fritze, J. Knecht, C. Bozler, and C. Keast, in IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, 2002), pp. 165–166.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rib waveguide structures (a) without and (b) with high-index thin film. The dimensions and refractive indices are denoted. The TE mode field contours for these two rib waveguides are shown, respectively, in (c) and (d), for the example of w = 10 μ m , a = b = 9 μ m , h = 2.5 μ m , d = 0.32 μ m , are n 1 = 3.477 , n 2 = 1.444 , n 3 = 1.444 , and n T = 3.505 . Here in (c) and (d), contour levels are at 10% intervals of the maximum field.

Fig. 2
Fig. 2

Mode field distributions of a standard single-mode fiber used in this study (solid curve); y-cut field distribution, at y = 11.5 μ m , of the proposed SOI rib waveguide (dashed curve); and x-cut field distribution, at x = 0 , of the proposed SOI rib waveguide (dotted–dashed line). Note that the maximum of the x-cut field distribution is adjusted to be at the same position as the maximum of the mode field distribution of the fiber.

Fig. 3
Fig. 3

Schemes for the 1 × 2 y branch and the 1 × 2 MMIC studied in this work. All dimension parameters are denoted. l, length of the taper; S, length of the waveguide bend, W = 10 μ m .

Fig. 4
Fig. 4

Contours of TE-mode field distributions at various longitudinal positions of an MMIC waveguide. Numerical results are shown for (top left) z = 0 μ m , (bottom left) z = 350 μ m , (top right) z = 600 μ m , and (bottom right) z = 1040 μ m (i.e., the output end of the MMIC). Contour levels are at 10% intervals of the maximum field.

Tables (1)

Tables Icon

Table 1 Excess Losses and Uniformities for the MMIC Studied for Different Refractive Indices of the High-Index Thin-Film Layer a

Metrics