Abstract

We report a technique that is capable of making simultaneous two-point time-series measurements of minor-species concentrations in turbulent flames. The experimental setup, which incorporates picosecond time-resolved laser-induced fluorescence, has a spatial resolution of less than 250μm and a temporal resolution of less than 100μs, which spatially and temporally resolve microscales in many turbulent flows. Two-point time-series data are given for a standard turbulent nonpremixed flame at Re=10,000, including a discussion of potential implications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Renfro, G. B. King, and N. M. Laurendeau, Appl. Opt. 38, 4596 (1999).
    [CrossRef]
  2. S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Opt. Lett. 23, 1215 (1998).
    [CrossRef]
  3. M. W. Renfro, S. D. Pack, and N. M. Laurendeau, Appl. Phys. B 69, 137 (1999).
    [CrossRef]
  4. M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
    [CrossRef]
  5. G. H. Wang, N. T. Clemens, and P. L. Varghese, Proc. Combust. Inst. 30, 691 (2005).
    [CrossRef]
  6. Hamamatsu, Inc., “Photon counting using photomultiplier tubes” (2001), http://sales.hamamatsu.com/assets/applications/ETD/PMT_photoncounting.
  7. J. W. Daily, Appl. Opt. 15, 955 (1976).
    [CrossRef] [PubMed]
  8. W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
    [CrossRef]

2005 (1)

G. H. Wang, N. T. Clemens, and P. L. Varghese, Proc. Combust. Inst. 30, 691 (2005).
[CrossRef]

2004 (1)

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

1999 (2)

M. W. Renfro, S. D. Pack, and N. M. Laurendeau, Appl. Phys. B 69, 137 (1999).
[CrossRef]

M. W. Renfro, G. B. King, and N. M. Laurendeau, Appl. Opt. 38, 4596 (1999).
[CrossRef]

1998 (1)

1996 (1)

W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

1976 (1)

Cao, M. H.

W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Chaturvedy, A.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

Clemens, N. T.

G. H. Wang, N. T. Clemens, and P. L. Varghese, Proc. Combust. Inst. 30, 691 (2005).
[CrossRef]

Daily, J. W.

Dreizler, A.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

Janicka, J.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

Kempf, A.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

King, G. B.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

M. W. Renfro, G. B. King, and N. M. Laurendeau, Appl. Opt. 38, 4596 (1999).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Opt. Lett. 23, 1215 (1998).
[CrossRef]

Laurendeau, N. M.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

M. W. Renfro, S. D. Pack, and N. M. Laurendeau, Appl. Phys. B 69, 137 (1999).
[CrossRef]

M. W. Renfro, G. B. King, and N. M. Laurendeau, Appl. Opt. 38, 4596 (1999).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Opt. Lett. 23, 1215 (1998).
[CrossRef]

Meier, W.

W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Pack, S. D.

M. W. Renfro, S. D. Pack, and N. M. Laurendeau, Appl. Phys. B 69, 137 (1999).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Opt. Lett. 23, 1215 (1998).
[CrossRef]

Prucker, S.

W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Renfro, M. W.

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

M. W. Renfro, G. B. King, and N. M. Laurendeau, Appl. Opt. 38, 4596 (1999).
[CrossRef]

M. W. Renfro, S. D. Pack, and N. M. Laurendeau, Appl. Phys. B 69, 137 (1999).
[CrossRef]

S. D. Pack, M. W. Renfro, G. B. King, and N. M. Laurendeau, Opt. Lett. 23, 1215 (1998).
[CrossRef]

Stricker, W.

W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Varghese, P. L.

G. H. Wang, N. T. Clemens, and P. L. Varghese, Proc. Combust. Inst. 30, 691 (2005).
[CrossRef]

Wang, G. H.

G. H. Wang, N. T. Clemens, and P. L. Varghese, Proc. Combust. Inst. 30, 691 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. W. Renfro, S. D. Pack, and N. M. Laurendeau, Appl. Phys. B 69, 137 (1999).
[CrossRef]

Combust. Flame (1)

M. W. Renfro, A. Chaturvedy, G. B. King, N. M. Laurendeau, A. Kempf, A. Dreizler, and J. Janicka, Combust. Flame 139, 142 (2004).
[CrossRef]

Combust. Sci. Technol. (1)

W. Meier, S. Prucker, M. H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

G. H. Wang, N. T. Clemens, and P. L. Varghese, Proc. Combust. Inst. 30, 691 (2005).
[CrossRef]

Other (1)

Hamamatsu, Inc., “Photon counting using photomultiplier tubes” (2001), http://sales.hamamatsu.com/assets/applications/ETD/PMT_photoncounting.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the detection system: MTS1, MTS2, micrometer translation stages; MONO, 1 8 m monochromator. The cross section of the flame is shown as a doughnut shape.

Fig. 2
Fig. 2

Wiring diagram for the photon-counting system. Delays of 3.0 or 10.0 ns are placed in various lines; AD1 and AD2 identify two delay lines that require calibration. All unused signals are 50 Ω terminated. N, I, O, CI, and CO in the photon-counting boards represent instrument module (NIM) inputs from the discriminators, start signal inputs, start signal outputs, channel advance inputs, and channel advance outputs, respectively. PD identifies the input from a photodiode, and VETO is the input of the VETO pulse.

Fig. 3
Fig. 3

Representative two-point [OH] time series at x D = 10 for flame H3. (a) The two PMTs are at the same position in the flame. (b) The two measured positions differ by 1.0 mm.

Fig. 4
Fig. 4

Three-dimensional plots of the space–time correlation at two peak [OH] positions: x D = 30 (mesh) and x D = 10 (shaded surface).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR = N s [ N s + 2 ( N b + N d ) ] 1 2 N s ( N s + 2 N b ) 1 2 = N s ( 1 + 2 SBR ) 1 2 ,
f st ( Δ r , Δ t ) = OH ( r , t ) OH ( r + Δ r , t + Δ t ) [ OH ( r , t ) 2 OH ( r + Δ r , t + Δ t ) 2 ] 1 2 ,

Metrics