Abstract

We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8nm wavelength. The elongation sensitivity is 131±3×105radm1 and the temperature sensitivity is 212±26radm1K1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. López-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, 2002).
  2. M. Komachiya, R. Minamitani, T. Fumino, T. Sakaguchi, and S. Watanabe, Appl. Opt. 38, 2767 (1999).
    [CrossRef]
  3. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
    [CrossRef]
  4. K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, Meas. Sci. Technol. 13, 1523 (2002).
    [CrossRef]
  5. C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
    [CrossRef]
  6. M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
    [CrossRef]
  7. C. D. Butter and G. B. Hocker, Appl. Opt. 17, 2867 (1978).
    [CrossRef] [PubMed]
  8. R. M. Waxler, D. Horowitz, and A. Feldman, Appl. Opt. 18, 101 (1979).
    [CrossRef] [PubMed]
  9. D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
    [CrossRef]
  10. A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
    [CrossRef]
  11. B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
    [CrossRef]
  12. J. M. Cariou, J. Dugas, L. Martin, and P. Michel, Appl. Opt. 25, 334 (1986).
    [CrossRef] [PubMed]
  13. J. Brandrup, E. H. Immergut, and E. A. Grulke, eds., Polymer Handbook (Wiley, 1999).

2003 (1)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
[CrossRef]

2002 (2)

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, Meas. Sci. Technol. 13, 1523 (2002).
[CrossRef]

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

1999 (1)

1992 (1)

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

1988 (1)

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

1987 (1)

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

1986 (1)

1979 (1)

1978 (1)

1976 (1)

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Alcoz, J. J.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Atkins, R. A.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Bertholds, A.

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

Bobb, L. C.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

Borbon, I. M.

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Butter, C. D.

Cantwell, W. J.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, Meas. Sci. Technol. 13, 1523 (2002).
[CrossRef]

Cariou, J. M.

Chtcherbakov, A. A.

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Chu, P. L.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
[CrossRef]

Dandliker, R.

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

Davis, J. P.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

Dugas, J.

Feldman, A.

Fumino, T.

Gibler, W. N.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Hocker, G. B.

Horowitz, D.

Karapanos, D.

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Komachiya, M.

Krumboltz, H. D.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

Kuang, K. S. C.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, Meas. Sci. Technol. 13, 1523 (2002).
[CrossRef]

Larson, D. C.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

Lee, C. E.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Liu, H. B.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
[CrossRef]

Liu, H. Y.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
[CrossRef]

Martin, L.

Michel, P.

Minamitani, R.

Miridonov, S. V.

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Peng, G. D.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
[CrossRef]

Raftopoulos, D. D.

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Sakaguchi, T.

Scully, P. J.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, Meas. Sci. Technol. 13, 1523 (2002).
[CrossRef]

Shlyagin, M. G.

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Spirin, V. V.

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Swart, P. L.

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Taylor, H. F.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Theocaris, P. S.

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Watanabe, S.

Waxler, R. M.

White, B. J.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

Yeh, Y.

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Appl. Opt. (4)

J. Lightwave Technol. (2)

A. Bertholds and R. Dandliker, J. Lightwave Technol. 6, 17 (1988).
[CrossRef]

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, J. Lightwave Technol. 5, 1169 (1987).
[CrossRef]

J. Phys. D (1)

D. D. Raftopoulos, D. Karapanos, and P. S. Theocaris, J. Phys. D 9, 869 (1976).
[CrossRef]

Meas. Sci. Technol. (1)

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, Meas. Sci. Technol. 13, 1523 (2002).
[CrossRef]

Opt. Commun. (1)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, Opt. Commun. 220, 337 (2003).
[CrossRef]

Opt. Eng. (1)

M. G. Shlyagin, P. L. Swart, S. V. Miridonov, A. A. Chtcherbakov, I. M. Borbon, and V. V. Spirin, Opt. Eng. 41, 1809 (2002).
[CrossRef]

Smart Mater. Struct. (1)

C. E. Lee, J. J. Alcoz, Y. Yeh, W. N. Gibler, R. A. Atkins, and H. F. Taylor, Smart Mater. Struct. 1, 123 (1992).
[CrossRef]

Other (2)

J. M. López-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, 2002).

J. Brandrup, E. H. Immergut, and E. A. Grulke, eds., Polymer Handbook (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mach–Zehnder interferometer configured for fiber strain-sensitivity measurement. LVDT, displacement transducer. The source is a 632.8 nm helium–neon stabilized laser.

Fig. 2
Fig. 2

Typical interference fringes during a strain cycle.

Fig. 3
Fig. 3

Top, (applied stress × fiber length) versus fiber extension. Young’s modulus is equal to the slope of the linear fit. Bottom, residuals to the fit.

Fig. 4
Fig. 4

Top, optical phase change versus fiber displacement. Bottom, residuals to the linear fit.

Fig. 5
Fig. 5

Top, optical phase change versus fiber’s average temperature. Bottom, linear fit.

Tables (1)

Tables Icon

Table 1 Comparison of Parameters of Standard Silica Fiber, Experimental Results for POF, and Values Calculated from Published Data for 632.8 nm Wavelength

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d Φ d L = 2 π n λ { 1 n 2 2 [ p 12 ν ( p 11 + p 12 ) ] } ,
d Φ d T = 2 π λ ( n 0 d L d T + L 0 d n d T ) = 2 π λ L 0 ( n 0 α + β ) .

Metrics