Abstract

Inhomogeneous loss generated by multimode laser linewidth broadening in an optical fiber is experimentally studied. With this mechanism, multiwavelength lasing is achieved by use of either fiber Raman gain or erbium-doped fiber gain. Through various pump powers and optical filter bandwidths, the relationship between inhomogeneous loss and the performance of a multiwavelength fiber laser is studied, and a physical explanation is provided.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kim, X. Zou, and K. Lewis, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThGG21.
  2. Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
    [CrossRef]
  3. C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
    [CrossRef]
  4. Q. Wang, Y. Wang, W. Zhang, X. Feng, X. Liu, and B. Zhou, Opt. Lett. 30, 952 (2005).
    [CrossRef] [PubMed]
  5. Y.-G. Han, T. V.A. Tran, S.-H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
    [CrossRef] [PubMed]
  6. M. Achtenhagen, T. G. Chang, and N. Nyman, Appl. Phys. Lett. 78, 1322 (2001).
    [CrossRef]

2005 (2)

2003 (1)

Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

2001 (2)

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

M. Achtenhagen, T. G. Chang, and N. Nyman, Appl. Phys. Lett. 78, 1322 (2001).
[CrossRef]

Achtenhagen, M.

M. Achtenhagen, T. G. Chang, and N. Nyman, Appl. Phys. Lett. 78, 1322 (2001).
[CrossRef]

Chang, T. G.

M. Achtenhagen, T. G. Chang, and N. Nyman, Appl. Phys. Lett. 78, 1322 (2001).
[CrossRef]

Chestnut, D. A.

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

Chung, Y.

Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

de Matos, C. J.S.

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

Feng, X.

Han, Y.-G.

Y.-G. Han, T. V.A. Tran, S.-H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
[CrossRef] [PubMed]

Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kang, J. U.

Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kim, C.-S.

Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kim, N.

N. Kim, X. Zou, and K. Lewis, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThGG21.

Kim, S.-H.

Koch, F.

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

Lee, S. B.

Lewis, K.

N. Kim, X. Zou, and K. Lewis, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThGG21.

Liu, X.

Nyman, N.

M. Achtenhagen, T. G. Chang, and N. Nyman, Appl. Phys. Lett. 78, 1322 (2001).
[CrossRef]

Reeves-Hall, P. C.

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

Taylor, J. R.

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

Tran, T. V.A.

Wang, Q.

Wang, Y.

Zhang, W.

Zhou, B.

Zou, X.

N. Kim, X. Zou, and K. Lewis, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThGG21.

Appl. Phys. Lett. (1)

M. Achtenhagen, T. G. Chang, and N. Nyman, Appl. Phys. Lett. 78, 1322 (2001).
[CrossRef]

Electron. Lett. (1)

C. J.S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, Electron. Lett. 37, 825 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y.-G. Han, C.-S. Kim, J. U. Kang, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Opt. Lett. (2)

Other (1)

N. Kim, X. Zou, and K. Lewis, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper ThGG21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. WDM, wavelength-division multiplexer.

Fig. 2
Fig. 2

Relationship of INL to nonlinear phase shift Φ NL for different types of optical filters and gain mechanisms. Filter types TBPF and FFP-TF: squares, EDF gain; circles, copumped Raman gain; upward-pointing triangles, counterpumped Raman gain. Filter types TBPF and SFBG: downward-pointing triangles, EDF gain; diamonds, copumped Raman gain; crosses, counterpumped Raman gain.

Fig. 3
Fig. 3

Output spectrum of a multiwavelength EDF laser when the EDFA output power is 160 mW (a) with a FFP-TF, (b) with a SFBG comb filter.

Fig. 4
Fig. 4

Output spectrum of a multiwavelength fiber Raman laser when the pump current is 3.2 A: with (a) a copumped Raman, (b) a counterpumped Raman configuration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

INL = 10 log 10 [ S in ( λ peak ) S out ( λ peak ) S out ( λ ) d λ S in ( λ ) d λ ] ,

Metrics