Abstract

We present a quantitative evaluation of the performance of a photoconductance-monitoring sensor array in a speckle-based vibration detection configuration. The device is found to be capable of detecting nanometer-amplitude vibrations in a single shot with incident intensities of only a few microwatts per square centimeter at kilohertz frequencies. This performance indicates that the photoconductance-monitoring array requires approximately 3 orders of magnitude lower intensity to achieve the same displacement sensitivity as competing technologies, such as photo-electromotive-force detectors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Heinz and E. Garmire, Appl. Phys. Lett. 84, 3196 (2004).
    [CrossRef]
  2. J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
    [CrossRef]
  3. A. Blouin and J.-P. Monchalin, Appl. Phys. Lett. 65, 932 (1994).
    [CrossRef]
  4. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
    [CrossRef]
  5. G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.
  6. D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, Opt. Lett. 24, 342 (1999).
    [CrossRef]
  7. N. I. Korneev and S. I. Stepanov, J. Mod. Opt. 38, 2153 (1991).
    [CrossRef]
  8. N. Korneev and S. Stepanov, Opt. Commun. 115, 35 (1995).
    [CrossRef]
  9. N. Korneev, P. Rodríguez, and S. Stepanov, Opt. Eng. 38, 1014 (1999).
    [CrossRef]

2004 (1)

P. Heinz and E. Garmire, Appl. Phys. Lett. 84, 3196 (2004).
[CrossRef]

1999 (2)

1995 (1)

N. Korneev and S. Stepanov, Opt. Commun. 115, 35 (1995).
[CrossRef]

1994 (1)

A. Blouin and J.-P. Monchalin, Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

1991 (1)

N. I. Korneev and S. I. Stepanov, J. Mod. Opt. 38, 2153 (1991).
[CrossRef]

1990 (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

1985 (1)

J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
[CrossRef]

Bacher, G. D.

Blouin, A.

A. Blouin and J.-P. Monchalin, Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

Chiao, M. P.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, Opt. Lett. 24, 342 (1999).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.

Coy, J. A.

Dunning, G. J.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, Opt. Lett. 24, 342 (1999).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.

Garmire, E.

P. Heinz and E. Garmire, Appl. Phys. Lett. 84, 3196 (2004).
[CrossRef]

Heinz, P.

P. Heinz and E. Garmire, Appl. Phys. Lett. 84, 3196 (2004).
[CrossRef]

Klein, M. B.

Korneev, N.

N. Korneev, P. Rodríguez, and S. Stepanov, Opt. Eng. 38, 1014 (1999).
[CrossRef]

N. Korneev and S. Stepanov, Opt. Commun. 115, 35 (1995).
[CrossRef]

Korneev, N. I.

N. I. Korneev and S. I. Stepanov, J. Mod. Opt. 38, 2153 (1991).
[CrossRef]

Mitchell, P. V.

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.

Monchalin, J.-P.

A. Blouin and J.-P. Monchalin, Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
[CrossRef]

Nolte, D. D.

O’Meara, T. R.

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.

Pepper, D. M.

D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, Opt. Lett. 24, 342 (1999).
[CrossRef]

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Rodríguez, P.

N. Korneev, P. Rodríguez, and S. Stepanov, Opt. Eng. 38, 1014 (1999).
[CrossRef]

Sokolov, I. A.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Stepanov, S.

N. Korneev, P. Rodríguez, and S. Stepanov, Opt. Eng. 38, 1014 (1999).
[CrossRef]

N. Korneev and S. Stepanov, Opt. Commun. 115, 35 (1995).
[CrossRef]

Stepanov, S. I.

N. I. Korneev and S. I. Stepanov, J. Mod. Opt. 38, 2153 (1991).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

P. Heinz and E. Garmire, Appl. Phys. Lett. 84, 3196 (2004).
[CrossRef]

J.-P. Monchalin, Appl. Phys. Lett. 47, 14 (1985).
[CrossRef]

A. Blouin and J.-P. Monchalin, Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

J. Mod. Opt. (1)

N. I. Korneev and S. I. Stepanov, J. Mod. Opt. 38, 2153 (1991).
[CrossRef]

Opt. Commun. (1)

N. Korneev and S. Stepanov, Opt. Commun. 115, 35 (1995).
[CrossRef]

Opt. Eng. (1)

N. Korneev, P. Rodríguez, and S. Stepanov, Opt. Eng. 38, 1014 (1999).
[CrossRef]

Opt. Lett. (1)

Other (1)

G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, in International Trends in Optics, R. E. Green, ed. (Plenum, 1998), Vol. VIII, pp. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup (not to scale). Laser beam LB is focused by lens FL onto white paper mounted on oscillating piezoelectric wafer PW. Scattered light is collected by lens CL and split into two arms by beam splitter BS for detection by photodiode PD and the FPPC array. The beam splitter and photodiode would not be required in practical applications.

Fig. 2
Fig. 2

Output from one FPPC channel for approximately 5 nm (top two traces) and 20 nm (lower two traces) surface displacement at 3 kHz . Within each pair of traces, the upper one shows a single-shot oscilloscope acquisition, while the lower trace was averaged over 128 acquisitions. The traces have been separated vertically for clarity.

Fig. 3
Fig. 3

FPPC detector output of all four channels of our device, for approximately 20 nm surface displacement at 3 kHz , averaged over 128 acquisitions. The traces have been separated vertically for clarity.

Metrics