Abstract

We propose and experimentally demonstrate a novel switchable and discretely tunable comb filter based on a thermally induced linearly chirped fiber Bragg grating. Experimentally we achieved a thermally induced optical bandpass filter that has eight switchable passband peaks with peak separations of 1.6 and 3.2nm, a very narrow bandwidth (as small as 10pm) of each peak, a tunable range of 16.5nm, and a greater than 25dB rejection ratio. Two spectral peaks separated by only 0.8nm were also obtained with this comb filter. This filter provides the unique advantages of an all-fiber structure, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, low polarization sensitivity, simple structure, ease of fabrication, and low cost.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
    [CrossRef]
  2. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
    [CrossRef]
  3. A. Bellemare, M. Sek, M. Rochette, S. LaRochelle, and M. Tu, J. Lightwave Technol. 18, 825 (2000).
    [CrossRef]
  4. X. Shu, J. Shan, and D. Huang, IEEE Photon. Technol. Lett. 12, 980 (2000).
    [CrossRef]
  5. S. Yamashita and T. Baba, Electron. Lett. 37, 1015 (2001).
    [CrossRef]
  6. D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
    [CrossRef]
  7. S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
    [CrossRef]
  8. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, Opt. Lett. 29, 29 (2004).
    [CrossRef] [PubMed]
  9. M. Janos and J. Canning, Electron. Lett. 31, 1007 (1995).
    [CrossRef]
  10. S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
    [CrossRef]

2004 (3)

J. L. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, Opt. Lett. 29, 29 (2004).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
[CrossRef]

2001 (1)

S. Yamashita and T. Baba, Electron. Lett. 37, 1015 (2001).
[CrossRef]

2000 (2)

1999 (1)

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
[CrossRef]

1998 (1)

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

1995 (2)

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

M. Janos and J. Canning, Electron. Lett. 31, 1007 (1995).
[CrossRef]

An, H. L.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
[CrossRef]

Asseh, A.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Baba, T.

S. Yamashita and T. Baba, Electron. Lett. 37, 1015 (2001).
[CrossRef]

Bellemare, A.

Bihn, L. N.

S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
[CrossRef]

Boimovich, E.

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

Canning, J.

M. Janos and J. Canning, Electron. Lett. 31, 1007 (1995).
[CrossRef]

Huang, D.

X. Shu, J. Shan, and D. Huang, IEEE Photon. Technol. Lett. 12, 980 (2000).
[CrossRef]

Janos, M.

M. Janos and J. Canning, Electron. Lett. 31, 1007 (1995).
[CrossRef]

LaRochelle, S.

Laurell, F.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Li, S. Y.

S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
[CrossRef]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, Opt. Lett. 29, 29 (2004).
[CrossRef] [PubMed]

Lidgard, A.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Lin, X. Z.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
[CrossRef]

Liu, H. D.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
[CrossRef]

Margulis, W.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Ngo, N. Q.

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, Opt. Lett. 29, 29 (2004).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
[CrossRef]

J. L. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Pun, E. Y. B.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
[CrossRef]

Rochette, M.

Sadot, D.

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

Sahlgren, B.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Sandgren, S.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Sek, M.

Shan, J.

X. Shu, J. Shan, and D. Huang, IEEE Photon. Technol. Lett. 12, 980 (2000).
[CrossRef]

Shu, X.

X. Shu, J. Shan, and D. Huang, IEEE Photon. Technol. Lett. 12, 980 (2000).
[CrossRef]

Shum, P.

Stubbe, R.

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

Tjin, S. C.

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, Opt. Lett. 29, 29 (2004).
[CrossRef] [PubMed]

S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
[CrossRef]

J. L. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Tu, M.

Yamashita, S.

S. Yamashita and T. Baba, Electron. Lett. 37, 1015 (2001).
[CrossRef]

Yang, J. L.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Zhang, J.

Electron. Lett. (3)

S. Yamashita and T. Baba, Electron. Lett. 37, 1015 (2001).
[CrossRef]

S. Sandgren, B. Sahlgren, A. Asseh, W. Margulis, F. Laurell, R. Stubbe, and A. Lidgard, Electron. Lett. 31, 665 (1995).
[CrossRef]

M. Janos and J. Canning, Electron. Lett. 31, 1007 (1995).
[CrossRef]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, IEEE Commun. Mag. 36, 50 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. L. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

X. Shu, J. Shan, and D. Huang, IEEE Photon. Technol. Lett. 12, 980 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Opt. Commun. 169, 159 (1999).
[CrossRef]

S. Y. Li, N. Q. Ngo, S. C. Tjin, and L. N. Bihn, Opt. Commun. 239, 339 (2004).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the proposed thermally switchable and tunable comb filter based on a LCFBG with multiple heated resistance wires: OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Measured transmission spectrum of the thermally switchable and tunable comb filter, which shows eight spectral peaks within the stop band of the LCFBG.

Fig. 3
Fig. 3

Relationship between the thermally induced wavelength spacing of the transmission peaks and the corresponding separation between the neighboring resistance wires.

Fig. 4
Fig. 4

Measured output spectrum of the switchable and tunable comb filter with two transmission peaks separated by as little as 0.8 nm .

Metrics