Abstract

A dual-channel fiber-optic sensor based on surface plasmon resonance (SPR) for self-referencing refractive-index measurements has been proposed. Most applications of fiber-optic SPR sensors are designed to measure the refractive index of a liquid or gas sample by measuring the signal from a single surface, the sensitivity and stability of which is easily affected by the fluctuation of external environmental conditions. We have designed a dual-channel fiber-optic surface sensor with two independent SPR signals from two areas of the same probe. A prototype sensor was fabricated and characterized. The preliminary experimental results demonstrate the characteristic responses of both SPR signals from two channels that independently correspond to the refractive index changes in the liquid samples with which they are in contact. The design could be extended to a multichannel sensor with further developments. The experimental results confirmed that one channel can be used as a reference sensor that could compensate for unexpected changes in bulk refraction or temperature and develop this sensor as a practicable high-sensitivity biosensing device.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro-capillary-based self-referencing surface plasmon resonance biosensor for determination of transferrin

Shimeng Chen, Yun Liu, Zigeng Liu, Shuwen Chu, and Wei Peng
Appl. Opt. 55(30) 8571-8575 (2016)

Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light

Hong-Yu Lin, Woo-Hu Tsai, Yu-Chia Tsao, and Bor-Chiou Sheu
Appl. Opt. 46(5) 800-806 (2007)

Simple method for self-referenced and lable-free biosensing by using a capillary sensing element

Yun Liu, Shimeng Chen, Qiang Liu, Zigeng Liu, and Peng Wei
Opt. Express 25(10) 11750-11759 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription