Abstract

We report on low-loss multiwavelength laser delivery of hollow optical fiber in a wide wavelength region, from the visible to the infrared. Improved methods of liquid-phase coating were used to fabricate the hollow fiber with inner films of a silver and a cyclic olefin polymer (COP) layer. The surface roughness of the silver layer was reduced dramatically by pretreatment on the inner glass surface with an SnCl2 solution. The COP layer roughness was also decreased by using an ambient atmosphere of tetrahydrofuran (THF) solvent during the COP layer formation. Owing to the smooth surfaces, hollow fiber with optimum COP film thickness for CO2 laser light simultaneously yields low losses for a Er:YAG laser and a red pilot beam. The power durability of CO2 and Er:YAG lasers, as well as the loss properties for the pilot beam, is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Miyagi and S. Kawakami, J. Low Temp. Phys. 2, 116 (1984).
  2. I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
    [CrossRef] [PubMed]
  3. R. K. Nubling and J. A. Harrington, Appl. Opt. 35, 372 (1996).
    [CrossRef] [PubMed]
  4. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, Appl. Opt. 37, 7758 (1998).
    [CrossRef]
  5. M. L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984).
    [CrossRef]
  6. Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, Appl. Opt. 41, 442 (2002).
    [CrossRef] [PubMed]
  7. H. Jelinkova, J. Sulc, P. Cerny, Y. W. Shi, Y. Matsuura, and M. Miyagi, Opt. Lett. 24, 957 (1999).
    [CrossRef]
  8. www.hitachi-cable.co.jp/copper/coppergoods/fiber/index.html.
  9. Y. Matsuura and M. Miyagi, Appl. Opt. 32, 6598 (1993).
    [CrossRef] [PubMed]
  10. Y. W. Shi, Y. Abe, Y. Matsuura, and M. Miyagi, Opt. Laser Technol. 31, 135 (1999).
    [CrossRef]

2002 (1)

1999 (2)

H. Jelinkova, J. Sulc, P. Cerny, Y. W. Shi, Y. Matsuura, and M. Miyagi, Opt. Lett. 24, 957 (1999).
[CrossRef]

Y. W. Shi, Y. Abe, Y. Matsuura, and M. Miyagi, Opt. Laser Technol. 31, 135 (1999).
[CrossRef]

1998 (1)

1996 (1)

1995 (1)

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

1993 (1)

1984 (2)

M. Miyagi and S. Kawakami, J. Low Temp. Phys. 2, 116 (1984).

M. L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984).
[CrossRef]

Abe, Y.

Cerny, P.

Croitoru, N.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Dror, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Ertl, T.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Gannot, I.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Harrington, J. A.

Inberg, A.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Jelinkova, H.

Kawakami, S.

M. Miyagi and S. Kawakami, J. Low Temp. Phys. 2, 116 (1984).

Matsuura, Y.

Miyagi, M.

Muller, G. J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Nubling, R. K.

Sato, S.

Schrunder, S.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Shi, Y. W.

Sulc, J.

Takada, G.

Taniwaki, M.

Tschepe, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

Uyama, H.

Wang, Y.

Wolbarsht, M. L.

M. L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984).
[CrossRef]

Yamamoto, T.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

M. L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, IEEE Trans. Biomed. Eng. 42, 967 (1995).
[CrossRef] [PubMed]

J. Low Temp. Phys. (1)

M. Miyagi and S. Kawakami, J. Low Temp. Phys. 2, 116 (1984).

Opt. Laser Technol. (1)

Y. W. Shi, Y. Abe, Y. Matsuura, and M. Miyagi, Opt. Laser Technol. 31, 135 (1999).
[CrossRef]

Opt. Lett. (1)

Other (1)

www.hitachi-cable.co.jp/copper/coppergoods/fiber/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretical losses of the HE 11 mode in COP-coated Ag hollow fiber as a function of COP film thickness at wavelengths of 10.6, 2.94, and 0.63 μ m .

Fig. 2
Fig. 2

Visible–near-IR loss spectra of Ag-coated hollow fibers.

Fig. 3
Fig. 3

IR loss spectra of Ag hollow fibers ( 0.7 mm diameter × 1 m ) with and without a COP layer, where the fiber was excited by a Gaussian beam at 12° at FWHM.

Fig. 4
Fig. 4

Visible–near-IR loss spectra of COP-coated Ag hollow fibers ( 0.7 mm diameter × 1 m ) .

Fig. 5
Fig. 5

Measured bending loss of COP-coated hollow fiber for a C O 2 laser, an Er:YAG laser, and a red pilot beam.

Fig. 6
Fig. 6

Power durability of an Er:YAG laser light for a hollow fiber ( 0.7 mm diameter × 1 m ) with a thick COP film optimized for both C O 2 and Er:YAG lasers.

Metrics