Abstract

We report on low-loss multiwavelength laser delivery of hollow optical fiber in a wide wavelength region, from the visible to the infrared. Improved methods of liquid-phase coating were used to fabricate the hollow fiber with inner films of a silver and a cyclic olefin polymer (COP) layer. The surface roughness of the silver layer was reduced dramatically by pretreatment on the inner glass surface with an SnCl2 solution. The COP layer roughness was also decreased by using an ambient atmosphere of tetrahydrofuran (THF) solvent during the COP layer formation. Owing to the smooth surfaces, hollow fiber with optimum COP film thickness for CO2 laser light simultaneously yields low losses for a Er:YAG laser and a red pilot beam. The power durability of CO2 and Er:YAG lasers, as well as the loss properties for the pilot beam, is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription