Abstract

Polarization dependence in microbend gratings is an inherent problem, even in perfectly circular fibers, since antisymmetric modes are almost degenerate linear combinations of four distinct, polarization-sensitive modes. We demonstrate a novel fiber design that lifts polarization degeneracies of the antisymmetric modes to solve this problem. By intentionally exacerbating the polarization splittings, we achieve coupling to only the polarization-insensitive doublet, over wavelength ranges exceeding 100nm, thus demonstrating a device with practical usable bandwidths. This allows all previous applications envisaged with UV-induced long-period gratings to be realized with the significantly lower-cost microbend technology platform.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Probst, A. Bjarklev, and S. B. Andreasen, J. Lightwave Technol. 7, 55 (1989).
    [CrossRef]
  2. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, Opt. Lett. 25, 710 (2000).
    [CrossRef]
  3. S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
    [CrossRef]
  4. S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
    [CrossRef]
  5. Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
    [CrossRef]
  6. C. D. Pool, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
    [CrossRef]
  7. T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
    [CrossRef]
  8. S. Golowich and S. Ramachandran, Opt. Express 13, 6870 (2005).
    [CrossRef] [PubMed]

2005 (1)

2003 (1)

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

2002 (1)

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

2000 (2)

S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, Opt. Lett. 25, 710 (2000).
[CrossRef]

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

1999 (1)

S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
[CrossRef]

1991 (1)

C. D. Pool, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

1989 (1)

C. B. Probst, A. Bjarklev, and S. B. Andreasen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Andreasen, S. B.

C. B. Probst, A. Bjarklev, and S. B. Andreasen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Au, A. A.

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

Birks, T. A.

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

Bjarklev, A.

C. B. Probst, A. Bjarklev, and S. B. Andreasen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Diez, A.

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

Digonnet, M. J. F.

Dimarcello, F.

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

Dimmick, T. E.

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

Ghalmi, S.

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

Golowich, S.

Kakarantzas, G.

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

Kim, B. Y.

S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
[CrossRef]

Kim, H. K.

S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
[CrossRef]

Kino, G. S.

Lee, H. K.

S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
[CrossRef]

Lee, H. P.

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

Li, Q.

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

Lin, C.-H.

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

Lyons, E. R.

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

Monberg, E.

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

Nelson, K. T.

C. D. Pool, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Pool, C. D.

C. D. Pool, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Probst, C. B.

C. B. Probst, A. Bjarklev, and S. B. Andreasen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

Ramachandran, S.

S. Golowich and S. Ramachandran, Opt. Express 13, 6870 (2005).
[CrossRef] [PubMed]

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

Russell, P. St. J.

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

Savin, S.

Shaw, H. J.

Townsend, C. D.

C. D. Pool, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Wisk, P.

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

Yan, M.

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

Yun, S. H.

S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. H. Yun, H. K. Lee, H. K. Kim, and B. Y. Kim, IEEE Photon. Technol. Lett. 11, 1229 (1999).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 1563 (2002).
[CrossRef]

T. E. Dimmick, G. Kakarantzas, T. A. Birks, A. Diez, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 1210 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Ramachandran, M. Yan, E. Monberg, F. Dimarcello, P. Wisk, and S. Ghalmi, IEEE Photonics Technol. Lett. 15, 1561 (2003).
[CrossRef]

J. Lightwave Technol. (2)

C. B. Probst, A. Bjarklev, and S. B. Andreasen, J. Lightwave Technol. 7, 55 (1989).
[CrossRef]

C. D. Pool, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scalar (left) and vector (right of brace) representations of the first higher-order antisymmetric mode group (the LP 11 mode). (b) Polarization-sensitive microbend grating spectra in TWRS fiber arising from vector components of LP 11 ; β TM 01 β HE 21 β TE 01 .

Fig. 2
Fig. 2

Index profile (shaded) and LP 11 mode intensity profile (curve). The LP 11 mode has high intensity near large index steps leading to large I 1 and I 2 [Eq. (3)]. This yields a large vector correction for the HE 21 and TM 01 modes. Hence the three vector components of the LP 11 mode are substantially separated in resonant wavelength.

Fig. 3
Fig. 3

(a) Grating spectra in designed fiber at different grating periods. Clearly separated resonances for three vector modes. (b) Resultant phase-matching curve shows more than 60 nm separation between the HE 21 and the TE 01 or TM 01 modes.

Fig. 4
Fig. 4

Polarization-dependent spectrum of MIGs in a novel fiber design. TE or TM coupling changes with the SOP; the HE mode is not perturbed. Large wavelength separation of HE from TE or TM yields a PDL-free device over at least 94 nm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ res = Λ ( n 1 n 2 ) ,
δ β TE 01 = 0 ,
δ β TM 01 = 2 ( I 1 + I 2 ) ,
δ β HE 21 even , odd = ( I 1 I 2 ) ,
I 1 r E ( r ) E ( r ) r F ( r ) r d r ,
I 2 E 2 ( r ) F ( r ) r d r ,

Metrics