Abstract

We propose and demonstrate a novel approach in optical fiber design in which the optical waveguide is formed by a ring of large air holes surrounding a solid silica core. With an appropriate choice of the geometrical configuration, robust single-transverse-mode propagation with a record effective area of 1417μm2, verified by various methods, was demonstrated. A breakthrough was made toward the development of practical ultra-high-power fiber lasers as we observed negligible loss of the fiber at bending diameters as small as 15cm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Gapontsev, “Recent progress in beam quality improvement of multi-kW fiber lasers,” presented at SPIE Photonics West, San Jose, Calif., January 22–27, 2005.
  2. M. E. Fermann, Opt. Lett. 23, 52 (1998).
    [CrossRef]
  3. P. Koplow, A. V. Kliner, and L. Goldberg, Opt. Lett. 25, 442 (2000).
    [CrossRef]
  4. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
    [CrossRef]
  5. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, Opt. Express 12, 1313 (2004).
    [CrossRef] [PubMed]
  6. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39, 1802 (2003).
    [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, J. Lightwave Technol. 18, 1084 (2000).
    [CrossRef]
  8. K. M. Lo, R. C. McPhedran, I. M. Basset, and G. W. Milton, J. Lightwave Technol. 12, 396 (1994).
    [CrossRef]
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  10. B. T. Kuhlmey, Opt. Lett. 27, 1684 (2002).
    [CrossRef]
  11. A. E. Siegman, in Proc. SPIE 1224, 2 (1990).
    [CrossRef]
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  13. J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron. 27, 531 (1991).
    [CrossRef]

2004 (1)

2003 (1)

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39, 1802 (2003).
[CrossRef]

2002 (2)

2001 (1)

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

2000 (2)

1998 (1)

1994 (1)

K. M. Lo, R. C. McPhedran, I. M. Basset, and G. W. Milton, J. Lightwave Technol. 12, 396 (1994).
[CrossRef]

1991 (1)

J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron. 27, 531 (1991).
[CrossRef]

1990 (1)

A. E. Siegman, in Proc. SPIE 1224, 2 (1990).
[CrossRef]

Basset, I. M.

K. M. Lo, R. C. McPhedran, I. M. Basset, and G. W. Milton, J. Lightwave Technol. 12, 396 (1994).
[CrossRef]

Besse, P.-A.

J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron. 27, 531 (1991).
[CrossRef]

Botten, L. C.

Broeng, J.

Burdge, G. L.

Eggleton, B. J.

Fermann, M. E.

Folkenberg, J. R.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39, 1802 (2003).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

Gapontsev, V. P.

V. P. Gapontsev, “Recent progress in beam quality improvement of multi-kW fiber lasers,” presented at SPIE Photonics West, San Jose, Calif., January 22–27, 2005.

Goldberg, L.

Gu, J.-S.

J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron. 27, 531 (1991).
[CrossRef]

Jakobsen, C.

Kerbage, C.

Kliner, A. V.

Koplow, P.

Kuhlmey, B. T.

Liem, A.

Limpert, J.

Lo, K. M.

K. M. Lo, R. C. McPhedran, I. M. Basset, and G. W. Milton, J. Lightwave Technol. 12, 396 (1994).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Martijn de Sterke, C.

Maystre, D.

McPhedran, R. C.

Melchior, H.

J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron. 27, 531 (1991).
[CrossRef]

Milton, G. W.

K. M. Lo, R. C. McPhedran, I. M. Basset, and G. W. Milton, J. Lightwave Technol. 12, 396 (1994).
[CrossRef]

Mortensen, N. A.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39, 1802 (2003).
[CrossRef]

Nielsen, M. D.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39, 1802 (2003).
[CrossRef]

Nolte, S.

Petersson, A.

Reich, M.

Renversez, G.

Schreiber, T.

Siegman, A. E.

A. E. Siegman, in Proc. SPIE 1224, 2 (1990).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Tünnermann, A.

Westbrook, P. S.

White, C. A.

White, T. P.

Windeler, R. S.

Zellmer, H.

Electron. Lett. (1)

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett. 39, 1802 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron. 27, 531 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

A. E. Siegman, in Proc. SPIE 1224, 2 (1990).
[CrossRef]

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

V. P. Gapontsev, “Recent progress in beam quality improvement of multi-kW fiber lasers,” presented at SPIE Photonics West, San Jose, Calif., January 22–27, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Contours of confinement loss for one ring and two rings of holes. 1 OM = first -order mode; 2 OM = second -order mode. The inset shows a micrograph of the fiber’s cross section.

Fig. 2
Fig. 2

Measured and simulated near-field mode profiles at 1064 nm . Slices of the intensity profiles through the mode center are also plotted along the x and y axes.

Fig. 3
Fig. 3

Amount of bend loss measured along the two different bending planes A A and B B at 1064 nm .

Fig. 4
Fig. 4

(Online color) Left and center, measured near-field mode profile when the fiber is bent along plane A A . Left, the peak intensity is normalized to 1.0 and plotted on a linear scale. Center, the logarithm of the normalized intensity is plotted. Right, contour plot of the simulated near-field mode profile of a similar fiber, where the six holes are identical and the core size is 50 μ m . The bend radius in the simulations is 15.8 cm .

Metrics