Abstract

We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multichannel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8nm, or 99GHz at 1555nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
    [CrossRef]
  2. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, Opt. Lett. 27, 482 (2002).
    [CrossRef]
  3. Y. D. Gong, P. Shum, D. Y. Tang, and C. Lu, in Proceedings of the 29th European Conference on Optical Communications—14th International Conference on Integrated Optics and Optical Fibre Communication (2003), Vol. 3, pp. 562–563.
  4. M. J. Guy, D. U. Noske, and J. R. Taylor, Opt. Lett. 18, 1447 (1993).
    [CrossRef] [PubMed]
  5. Y. D. Gong, P. Shum, C. Lu, and D. Y. Tang, “Passively mode-locked fiber ring laser with tunable repetition rate output,” Opt. Eng. (to be published).
  6. E. Yoshida and M. Nakazawa, Opt. Lett. 22, 1409 (1997).
    [CrossRef]
  7. M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
    [CrossRef] [PubMed]
  8. M. Horowitz and Y. Silberberg, Opt. Lett. 22, 1760 (1997).
    [CrossRef]
  9. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, J. Opt. Soc. Am. B 17, 28 (2000).
    [CrossRef]

2002

2000

1997

1994

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

1993

Barad, Y.

Coen, S.

Demokan, M. S.

Emplit, P.

Gong, Y. D.

Y. D. Gong, P. Shum, D. Y. Tang, and C. Lu, in Proceedings of the 29th European Conference on Optical Communications—14th International Conference on Integrated Optics and Optical Fibre Communication (2003), Vol. 3, pp. 562–563.

Y. D. Gong, P. Shum, C. Lu, and D. Y. Tang, “Passively mode-locked fiber ring laser with tunable repetition rate output,” Opt. Eng. (to be published).

Guy, M. J.

Haelterman, M.

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Horowitz, M.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Lu, C.

Y. D. Gong, P. Shum, D. Y. Tang, and C. Lu, in Proceedings of the 29th European Conference on Optical Communications—14th International Conference on Integrated Optics and Optical Fibre Communication (2003), Vol. 3, pp. 562–563.

Y. D. Gong, P. Shum, C. Lu, and D. Y. Tang, “Passively mode-locked fiber ring laser with tunable repetition rate output,” Opt. Eng. (to be published).

Man, W. S.

Nakazawa, M.

Noske, D. U.

Shum, P.

Y. D. Gong, P. Shum, C. Lu, and D. Y. Tang, “Passively mode-locked fiber ring laser with tunable repetition rate output,” Opt. Eng. (to be published).

Y. D. Gong, P. Shum, D. Y. Tang, and C. Lu, in Proceedings of the 29th European Conference on Optical Communications—14th International Conference on Integrated Optics and Optical Fibre Communication (2003), Vol. 3, pp. 562–563.

Silberberg, Y.

Sylvestre, T.

Tam, H. Y.

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Tang, D. Y.

W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, J. Opt. Soc. Am. B 17, 28 (2000).
[CrossRef]

Y. D. Gong, P. Shum, D. Y. Tang, and C. Lu, in Proceedings of the 29th European Conference on Optical Communications—14th International Conference on Integrated Optics and Optical Fibre Communication (2003), Vol. 3, pp. 562–563.

Y. D. Gong, P. Shum, C. Lu, and D. Y. Tang, “Passively mode-locked fiber ring laser with tunable repetition rate output,” Opt. Eng. (to be published).

Taylor, J. R.

Wai, P. K. A.

Yoshida, E.

IEEE J. Quantum Electron.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

Y. D. Gong, P. Shum, C. Lu, and D. Y. Tang, “Passively mode-locked fiber ring laser with tunable repetition rate output,” Opt. Eng. (to be published).

Y. D. Gong, P. Shum, D. Y. Tang, and C. Lu, in Proceedings of the 29th European Conference on Optical Communications—14th International Conference on Integrated Optics and Optical Fibre Communication (2003), Vol. 3, pp. 562–563.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the proposed passively mode-locked ring fiber laser: WDM, wavelength-division-multiplexing coupler; PC, polarization controller; SFBG, sampled fiber Bragg grating; OC, optical circulator; HNL-PCF, highly nonlinear photonic crystal fiber; PI, polarization-dependent isolator; EDF, erbium-doped fiber; ISO, isolator.

Fig. 2
Fig. 2

Reflection spectrum of the SFBG.

Fig. 3
Fig. 3

Autocorrelation waveforms and spectra of the pulse trains for repetition rates of (a) 99, (b) 198, (c) 297, (d) 396, (e) 495, (f) 594, (g) 693 GHz , which are the basic repetition rate and two, three, four, five, six, and seven times the basic repetition rate, respectively.

Metrics