Abstract

When several hollow photonic crystal fibers (HPCFs) are placed in proximity to each other, radiation-induced interfiber coupling between their core guided modes is observed. Under certain conditions coupling between the core modes of two touching collinear fibers can have a resonant increase via excitation of a low-quality intermirror cavity resonant state. Such coupling, however, decreases dramatically within the first micrometer of intermirror separation. Moreover, when fibers are touching, in the frequency domain a large number of accidental degeneracies with fiber surface and mirror states complicate the design of a stable 2×2 coupler. To alleviate these problems we consider coupling among three hollow Bragg fibers. When placed in the vertices of an isosceles triangle, even for a finite separation between fibers, triangular interfiber cavity forms a high-quality resonator that can be tuned via additional structural elements to a particular frequency of interest. Interfiber surface states are suppressed by keeping the fiber separation finite, thus allowing stable coupling conditions in a 3×3 HPCF coupler configuration.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
    [CrossRef] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
    [CrossRef] [PubMed]
  3. P. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  4. T. Katagiri, Y. Matsuura, and M. Miyagi, Opt. Lett. 29, 557 (2004).
    [CrossRef] [PubMed]
  5. M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
    [CrossRef]
  6. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]
  7. M. Skorobogatiy, K. Saitoh, and M. Koshiba, Opt. Lett. 29, 2112 (2004).
    [CrossRef] [PubMed]
  8. M. Skorobogatiy, K. Saitoh, and M. Koshiba, J. Opt. Soc. Am. B 21, 2095 (2004).
    [CrossRef]
  9. M. Skorobogatiy, K. Saitoh, and M. Koshiba, in progress.

2004 (3)

2003 (3)

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

2002 (2)

B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, Opt. Lett. 27, 812 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Argyros, A.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Barton, G.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Bassett, I. M.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Eom, J. B.

Fellew, M.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Henry, G.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Issa, N. A.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Katagiri, T.

Kim, J.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Koshiba, M.

Large, M. C. J.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Lee, B. H.

Manos, S.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Matsuura, Y.

Miyagi, M.

Moon, D. S.

Muller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Padden, W.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Paek, U.-C.

Poladian, L.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Russell, P.

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Saitoh, K.

Skorobogatiy, M.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

van Eijkelenborg, M. A.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Yang, G.-H.

Zagari, J.

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

M. A. van Eijkelenborg, A. Argyros, G. Barton, I. M. Bassett, M. Fellew, G. Henry, N. A. Issa, M. C. J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, Opt. Fiber Technol. 9, 199 (2003).
[CrossRef]

Opt. Lett. (3)

Science (1)

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Other (1)

M. Skorobogatiy, K. Saitoh, and M. Koshiba, in progress.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Online color) (a) Schematic of 3 × 3 coupler and vectors of the transverse electric fields of TE 01 -like supermodes with (b) A 2 , (c) E 1 , (d) E 2 symmetries. Dotted circles, tuning dielectric rod that can be placed into the interfiber cavity.

Fig. 2
Fig. 2

(Online color) 3 × 3 coupler design regimes. The ratio of coupling strength to the highest supermode loss is shown as functions of λ and d. In the narrowband coupling regime, 0.15 μ m d 0.3 μ m , coupling is strong only around pronounced cavity resonances. In the broadband coupling regime, d 0.15 μ m , coupling is strong for almost all λ.

Fig. 3
Fig. 3

(Online color) Narrowband coupling, d = 0.3 μ m . The ratio of coupling strength to the highest supermode loss is shown as a function of λ. Inset, log 10 of the normalized field amplitude of cavity resonance λ = 1589 nm .

Fig. 4
Fig. 4

(Online color) 3 × 3 coupler with fiber separation d = 0.3 μ m and a resonator rod. The ratio of coupling strength to the highest supermode loss is shown as a function of λ and resonator rod index n r . Near degeneracies of the supermodes and resonator states correspond to the regions of coupling increase.

Fig. 5
Fig. 5

(Online color) 3 × 3 coupler with fiber separation d = 0.3 μ m and resonator rod of n r = 1.14 . The ratio of coupling strength to the highest supermode loss is shown as a function of λ. Inset, log 10 of the normalized field amplitude of a cavity resonance λ = 1568 nm .

Metrics