Abstract

We present a new method to measure the polarization state of a terahertz pulse by using a modified electro-optic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results: spectroscopy measurements on polystyrene foam and terahertz images of a plastic coin. Both measurements show a sample-induced rotation of the terahertz electric field vector, which is surprisingly large and is a strong function of frequency. A promising aspect of our setup is the possibility of simultaneously measuring both transversal electric field components.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 807 (1995).
    [CrossRef]
  2. Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
    [CrossRef]
  3. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
    [CrossRef] [PubMed]
  4. Z. Jiang and X.-C. Zhang, Opt. Lett. 23, 1114 (1998).
    [CrossRef]
  5. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
    [CrossRef]
  6. J. Pearce, Z. Jian, and D. M. Mittleman, Opt. Lett. 29, 2926 (2004).
    [CrossRef]
  7. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).
    [CrossRef]
  8. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
    [CrossRef]
  9. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, J. Opt. Soc. Am. B 18, 313 (2001).
    [CrossRef]
  10. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, J. Opt. Soc. Am. B 21, 622 (2004).
    [CrossRef]
  11. J. V. Rudd, J. L. Johnson, and D. M. Mittleman, J. Opt. Soc. Am. B 18, 1524 (2001).
    [CrossRef]

2004 (2)

2002 (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
[CrossRef]

2001 (2)

1998 (2)

Z. Jiang and X.-C. Zhang, Opt. Lett. 23, 1114 (1998).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

1997 (2)

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
[CrossRef] [PubMed]

1996 (1)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

1995 (1)

Bakker, H. J.

Boivin, L.

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).
[CrossRef]

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).
[CrossRef]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Hu, B. B.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
[CrossRef] [PubMed]

Jian, Z.

Jiang, Z.

Johnson, J. L.

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Mittleman, D. M.

Nienhuys, H.-K.

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
[CrossRef] [PubMed]

B. B. Hu and M. C. Nuss, Opt. Lett. 20, 807 (1995).
[CrossRef]

Pearce, J.

Planken, P. C. M.

Rudd, J. V.

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
[CrossRef]

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
[CrossRef]

van der Valk, N. C. J.

Wenckebach, T.

Wenckebach, W. Th.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
[CrossRef]

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Zhang, X.-C.

Z. Jiang and X.-C. Zhang, Opt. Lett. 23, 1114 (1998).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 70, 1715 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the detection setup. The terahertz beam is focused onto the ZnTe detection crystal with a parabolic mirror. The probe beam is sent through a quarter-wave plate ( λ 4 ) and the parabolic mirror, and focused onto the detection crystal. After collimation, the probe beam propagates through a half-wave plate ( λ 2 ) and is split into two orthogonally polarized beams by a Wollaston prism (WP). The difference in the power of the two orthogonal polarizations is measured by a differential detector (DD1). Within the dotted frame it is shown how a nonpolarizing beam splitter (NPB) can be used to create a second detection arm. The inset shows how the angles ψ and δ are defined by the relative orientation of the 0 1 ¯ 1 and 2 ¯ 11 axis of the ZnTe crystal, and the axes of the Wollaston prism and the half-wave plate.

Fig. 2
Fig. 2

A, Electric field as a function of time of the reference pulses, which traveled only through air, and, B, of the terahertz pulses after traveling through 2 cm polystyrene foam. The dotted and the solid lines in A and B are, respectively, the fields parallel and perpendicular to the transmission direction of the polarizer. Graph C shows the measured and the calculated relative intensity difference between the two polarization directions as a function of frequency for propagation through the 1 and the 2 cm thick pieces of polystyrene foam.

Fig. 3
Fig. 3

A, B, D, Terahertz images and, C, visible-light photograph of a plastic coin. Left, transmitted terahertz power measured, A, parallel and, B, perpendicular to the original polarization direction (white is maximum transmission). C, Visible-light photograph of the coin. D, Plot of the angular rotation of the direction of the terahertz electric field (white is 0° rotation, black is 45° rotation).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ P = 24 π n 3 r 41 L P tot 3 λ [ E 2 ¯ 11 sin ( 2 ψ 4 δ ) + E 0 1 ¯ 1 cos ( 2 ψ 4 δ ) ] ,

Metrics