Abstract

Anomalous light transmission and resonant tunneling in frustrated total internal reflection (FTIR) are theoretically predicted to occur at periodically curved interfaces. For a low-contrast index and for grazing incidence, it is shown that FTIR resonant tunneling provides an optical realization of field-induced barrier transparency in quantum tunneling.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
    [CrossRef] [PubMed]
  2. Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997).
    [CrossRef]
  3. A. A. Stahlhofen, Phys. Rev. A 62, 012112 (2000).
    [CrossRef]
  4. J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
    [CrossRef] [PubMed]
  5. M. T. Reiten, K. McClatchey, D. Grischkowsky, and R. A. Cheville, Opt. Lett. 26, 1900 (2001).
    [CrossRef]
  6. Ch. Hirlimann, B. Thomas, and D. Boose, Europhys. Lett. 69, 48 (2005).
    [CrossRef]
  7. A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
    [CrossRef]
  8. H. J. Lezec and T. Thio, Opt. Photon. News 15, 29 (2004).
    [CrossRef]
  9. I. Avrutsky and R. Rabady, Opt. Lett. 26, 989 (2001).
    [CrossRef]
  10. I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett. 41, 111 (1998).
    [CrossRef]
  11. M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys. 5, 78 (2003).
    [CrossRef]
  12. O. Forslund and S. He, Electromagn. Waves 19, 147 (1998).
    [CrossRef]
  13. S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
    [CrossRef]
  14. S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
    [CrossRef]

2005 (2)

Ch. Hirlimann, B. Thomas, and D. Boose, Europhys. Lett. 69, 48 (2005).
[CrossRef]

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

2004 (1)

H. J. Lezec and T. Thio, Opt. Photon. News 15, 29 (2004).
[CrossRef]

2003 (2)

M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys. 5, 78 (2003).
[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
[CrossRef]

2002 (1)

A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
[CrossRef]

2001 (2)

2000 (2)

A. A. Stahlhofen, Phys. Rev. A 62, 012112 (2000).
[CrossRef]

J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
[CrossRef] [PubMed]

1998 (2)

I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett. 41, 111 (1998).
[CrossRef]

O. Forslund and S. He, Electromagn. Waves 19, 147 (1998).
[CrossRef]

1997 (1)

Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997).
[CrossRef]

1994 (1)

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

Artoni, M.

M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys. 5, 78 (2003).
[CrossRef]

Avrutsky, I.

Balcou, Ph.

Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997).
[CrossRef]

Barbara, A.

A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Boose, D.

Ch. Hirlimann, B. Thomas, and D. Boose, Europhys. Lett. 69, 48 (2005).
[CrossRef]

Bustarret, E.

A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Carey, J. J.

J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
[CrossRef] [PubMed]

Cheville, R. A.

Chiao, R. Y.

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

Chiofalo, M. L.

M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys. 5, 78 (2003).
[CrossRef]

Cianci, E.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

Dutriaux, L.

Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997).
[CrossRef]

Foglietti, V.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

Forslund, O.

O. Forslund and S. He, Electromagn. Waves 19, 147 (1998).
[CrossRef]

Grischkowsky, D.

He, S.

O. Forslund and S. He, Electromagn. Waves 19, 147 (1998).
[CrossRef]

Hirlimann, Ch.

Ch. Hirlimann, B. Thomas, and D. Boose, Europhys. Lett. 69, 48 (2005).
[CrossRef]

Janner, D.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
[CrossRef]

Jaroszynski, D. A.

J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
[CrossRef] [PubMed]

La Rocca, G. C.

M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys. 5, 78 (2003).
[CrossRef]

Laporta, P.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
[CrossRef]

Lefebvre, R.

I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett. 41, 111 (1998).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, Opt. Photon. News 15, 29 (2004).
[CrossRef]

Longhi, S.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
[CrossRef]

Lopez-Rios, T.

A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Marangoni, M.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

Marano, M.

S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
[CrossRef]

McClatchey, K.

Moiseyev, N.

I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett. 41, 111 (1998).
[CrossRef]

Qumerais, P.

A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Rabady, R.

Ramponi, R.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

Reiten, M. T.

Stahlhofen, A. A.

A. A. Stahlhofen, Phys. Rev. A 62, 012112 (2000).
[CrossRef]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

Thio, T.

H. J. Lezec and T. Thio, Opt. Photon. News 15, 29 (2004).
[CrossRef]

Thomas, B.

Ch. Hirlimann, B. Thomas, and D. Boose, Europhys. Lett. 69, 48 (2005).
[CrossRef]

Vorobeichik, I.

I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett. 41, 111 (1998).
[CrossRef]

Wynne, K.

J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
[CrossRef] [PubMed]

Zawadzka, J.

J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
[CrossRef] [PubMed]

Electromagn. Waves (1)

O. Forslund and S. He, Electromagn. Waves 19, 147 (1998).
[CrossRef]

Europhys. Lett. (2)

I. Vorobeichik, R. Lefebvre, and N. Moiseyev, Europhys. Lett. 41, 111 (1998).
[CrossRef]

Ch. Hirlimann, B. Thomas, and D. Boose, Europhys. Lett. 69, 48 (2005).
[CrossRef]

New J. Phys. (1)

M. L. Chiofalo, M. Artoni, and G. C. La Rocca, New J. Phys. 5, 78 (2003).
[CrossRef]

Opt. Lett. (2)

Opt. Photon. News (1)

H. J. Lezec and T. Thio, Opt. Photon. News 15, 29 (2004).
[CrossRef]

Phys. Rev. A (2)

A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994).
[CrossRef] [PubMed]

A. A. Stahlhofen, Phys. Rev. A 62, 012112 (2000).
[CrossRef]

Phys. Rev. B (1)

A. Barbara, P. Qumerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).
[CrossRef]

Phys. Rev. E (1)

S. Longhi, D. Janner, M. Marano, and P. Laporta, Phys. Rev. E 67, 036601 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005).
[CrossRef]

J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, Phys. Rev. Lett. 84, 1431 (2000).
[CrossRef] [PubMed]

Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scattering geometry for resonant FTIR at two periodically curved interfaces.

Fig. 2
Fig. 2

(a) Zero-order power transmission T versus incidence angle θ i in a sinusoidally curved air–glass interface ( n s = 1.5 ) for a few values of modulation depth A. Curve 1, A = 0 (flat interfaces); curve 2, A = 0.8 λ 0 ; curve 3, A = 1.2 λ 0 ; curve 4, A = 2 λ 0 . The other parameters are w = λ 0 2 and Λ = 0.3 λ 0 . (b) Power transmission versus incidence angle for a few values of modulation period Λ. Curve 1, Λ = 0.2 λ 0 ; curve 2, Λ = 0.5 λ 0 ; curve 3, Λ = λ 0 . Other parameters are w = 0.5 λ 0 and A = 1.2 λ 0 . The dashed curves in the figures are the power transmission curves predicted assuming a cycle-averaged dielectric permittivity ϵ av ( x ) for (a) A = 1.2 λ 0 and (b) Λ = 0.2 λ 0 .

Fig. 3
Fig. 3

Spectral transmission resonances in air–glass FTIR with sinusoidally curved interfaces ( w = 0.5 μ m , A = 2 μ m ) for Λ = 0.2 μ m (curve 1), Λ = 0.5 μ m (curve 2), and Λ = 1 μ m (curve 3, triply peaked structure). The incidence angle is θ i = 0.3206 rad .

Fig. 4
Fig. 4

Gray-scale plot showing the scattering of a monochromatic Gaussian beam ( FWHM 235 λ 0 ) on a sinusoidally curved FTIR interface ( A = 4 λ 0 , n s = 1.5 , w = λ 0 , Δ ϵ = 0.0891 and Λ = 4 λ 0 ) for two different incidence angles. (a) θ i = 0.0970 rad , (b) θ i = 0.0890 rad . The inset is the power transmission curve showing a resonant peak at θ i 0.0890 . Spatial variables x and z are in units of wavelength λ 0 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E y x = i ω μ 0 H z , H z x = i ω μ 0 2 E y z 2 + i ω ϵ 0 ϵ ( x , z ) E y .
d a n ± d z = i 2 Q n ( ω c 0 ) 2 m Δ ϵ n m ( x ) { a m ± exp [ ± i ( Q m Q n ) x ] + a m exp [ i ( Q m + Q n ) x ] } .
i ψ z = 2 2 n s 2 ψ x 2 + V [ x x 0 ( z ) ] ψ ,

Metrics