Abstract

We generated 0.66μm picosecond pulses by second-harmonic generation of the Raman amplified output of a 1.3μm actively mode-locked fiber ring laser in a periodically poled potassium titanyl phosphate (PPKTP) waveguide. The ring laser produced 9 ps pulses at a 20 GHz repetition frequency, was tunable over 1284–1330 nm, and was based on a semiconductor optical amplifier and a Mach–Zehnder amplitude modulator. The Raman amplifier served both to amplify the ring laser and to compress the pulses as solitons. The spectral flexibility of the amplifiers and the modulator should enable similar configurations to be made at other wavelengths and facilitate efficient frequency doubling in waveguides to other visible wavelengths.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
    [CrossRef]
  2. M. J. Guy, J. R. Taylor, and K. Wakita, Electron. Lett. 33, 1630 (1997).
    [CrossRef]
  3. D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
    [CrossRef]
  4. H. Ammann, W. Hodel, and H. P. Weber, Opt. Commun. 113, 39 (1994).
    [CrossRef]
  5. P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
    [CrossRef]
  6. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, Opt. Lett. 28, 1963 (2003).
    [CrossRef] [PubMed]
  7. F. Laurell and G. Arvidsson, J. Opt. Soc. Am. B 5, 292 (1988).
    [CrossRef]
  8. E. A. Swanson and S. R. Chinn, IEEE Photon. Technol. Lett. 7, 114 (1995).
    [CrossRef]

2003 (1)

2001 (1)

P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
[CrossRef]

1997 (1)

M. J. Guy, J. R. Taylor, and K. Wakita, Electron. Lett. 33, 1630 (1997).
[CrossRef]

1995 (1)

E. A. Swanson and S. R. Chinn, IEEE Photon. Technol. Lett. 7, 114 (1995).
[CrossRef]

1994 (2)

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

H. Ammann, W. Hodel, and H. P. Weber, Opt. Commun. 113, 39 (1994).
[CrossRef]

1993 (1)

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

1988 (1)

Agate, B.

Ammann, H.

H. Ammann, W. Hodel, and H. P. Weber, Opt. Commun. 113, 39 (1994).
[CrossRef]

Arvidsson, G.

Battle, P.

Champert, P. A.

P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
[CrossRef]

Chinn, S. R.

E. A. Swanson and S. R. Chinn, IEEE Photon. Technol. Lett. 7, 114 (1995).
[CrossRef]

Fry, T.

Guy, M. J.

M. J. Guy, J. R. Taylor, and K. Wakita, Electron. Lett. 33, 1630 (1997).
[CrossRef]

Hodel, W.

H. Ammann, W. Hodel, and H. P. Weber, Opt. Commun. 113, 39 (1994).
[CrossRef]

Laurell, F.

Noonan, E.

Pataca, D. M.

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

Pfeiffer, Th.

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

Popov, S. V.

P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
[CrossRef]

Rafailov, E. U.

Reeves-Hall, P. C.

P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
[CrossRef]

Rocha, M. L.

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

Saltiel, S. M.

Sibbett, W.

Smith, K.

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

Swanson, E. A.

E. A. Swanson and S. R. Chinn, IEEE Photon. Technol. Lett. 7, 114 (1995).
[CrossRef]

Taylor, J. R.

P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
[CrossRef]

M. J. Guy, J. R. Taylor, and K. Wakita, Electron. Lett. 33, 1630 (1997).
[CrossRef]

Veith, G.

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

Wakita, K.

M. J. Guy, J. R. Taylor, and K. Wakita, Electron. Lett. 33, 1630 (1997).
[CrossRef]

Weber, H. P.

H. Ammann, W. Hodel, and H. P. Weber, Opt. Commun. 113, 39 (1994).
[CrossRef]

Whitley, T. J.

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

Wyatt, R.

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

Electron. Lett. (3)

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

M. J. Guy, J. R. Taylor, and K. Wakita, Electron. Lett. 33, 1630 (1997).
[CrossRef]

D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley, and R. Wyatt, Electron. Lett. 30, 964 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. A. Swanson and S. R. Chinn, IEEE Photon. Technol. Lett. 7, 114 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

H. Ammann, W. Hodel, and H. P. Weber, Opt. Commun. 113, 39 (1994).
[CrossRef]

P. C. Reeves-Hall, P. A. Champert, S. V. Popov, and J. R. Taylor, Opt. Commun. 193, 283 (2001).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental configuration. Inset, signal spectrum and autocorrelation at the FRA output with 0.88 W of FRL power.

Fig. 2
Fig. 2

(a) SOA2 and FRA (for 0.88 W FRL power) output average powers and pulse durations across the tuning range; (b) 1327.7 nm signal average powers (after the focusing lens) and pulse durations as a function of in-STF FRL pump powers.

Fig. 3
Fig. 3

(a) Average power conversion curve for the 1327.7 nm pump to the red. Inset, waveguide phase-matching curve. (b) Red signal spectrum for 20 mW of average pump power at 1327.7 nm (after the focusing lens).

Metrics