Abstract

We numerically demonstrate the operation of a novel class of wavelength-division demultiplexing circuit based on photonic crystal waveguides that are entirely synthesized by ultralow-refractive-index metallic nanopillars. The operational principle of the newly proposed device is based on the phenomenon of total external reflections in ultralow-refractive-index metallic photonic crystal structures (metamaterials). In addition we provide detailed design guidelines for optimum device performance. The low propagation losses and compact size, as well as temperature-insensitive operation over a wide temperature range, are only a few of the advantages of the proposed technology, making this new type of demultiplexer an excellent candidate for applications in the visible spectrum.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical and experimental demonstration of a wavelength demultiplexer design by point-defect cavity coupled to a tapered photonic crystal waveguide

Zeki Hayran, Mirbek Turduev, Muriel Botey, Ramon Herrero, Kestutis Staliunas, and Hamza Kurt
Opt. Lett. 41(1) 119-122 (2016)

Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides

Ahmet E. Akosman, Mehmet Mutlu, Hamza Kurt, and Ekmel Ozbay
Opt. Express 19(24) 24129-24138 (2011)

Terahertz modulator based on insulator–metal transition in photonic crystal waveguide

Fei Fan, Yu Hou, Zi-Wei Jiang, Xiang-Hui Wang, and Sheng-Jiang Chang
Appl. Opt. 51(20) 4589-4596 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription