Abstract

We describe the creation and implementation of a near-field scanning solid immersion microscope that is specifically tailored for use in microfluidic systems. The microscope comprises a newly fabricated Weierstrass solid immersion lens (SIL), which is detached from its substrate and is free floating in the fluid, and a laser optical tweezer, which serves both as a trapping beam for alignment and positioning of the SIL and as a near-field scanning beam that images the sample through the SIL. A discussion of the SIL’s fabrication method is presented along with experimental results that demonstrate the effectiveness of our microscope design.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Kino, in Proc. SPIE 3467, 128–137 (1998).
  2. M. Ohtsu, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 339–355.
    [CrossRef]
  3. W. Qiang, L. P. Ghislain, and V. B. Elings, Proc. IEEE 88, 1491 (2000).
    [CrossRef]
  4. K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
    [CrossRef]
  5. F. Guo, T. E. Schlesinger, and D. D. Stancil, Appl. Opt. 39, 324 (2000).
    [CrossRef]
  6. A. T. O’Neil and M. J. Padgett, Opt. Commun. 193(1–6), 45–50 (2001).
    [CrossRef]
  7. A. Rohrbach, J. Huisken, and E. H. K. Stelzer, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 357–386.
    [CrossRef]
  8. S. M. Block, Nature 360, 493 (1992).
    [CrossRef] [PubMed]
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  10. A. T. O’Neil and M. J. Padgett, in Proc. SPIE 4274, 177–182 (2001).
  11. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
    [CrossRef]
  12. I. Ichimura, S. Hayashi, and G. S. Kino, Appl. Opt. 36, 4339 (1997).
    [CrossRef] [PubMed]
  13. C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
    [CrossRef]

2002 (1)

K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
[CrossRef]

2001 (2)

A. T. O’Neil and M. J. Padgett, Opt. Commun. 193(1–6), 45–50 (2001).
[CrossRef]

A. T. O’Neil and M. J. Padgett, in Proc. SPIE 4274, 177–182 (2001).

2000 (2)

W. Qiang, L. P. Ghislain, and V. B. Elings, Proc. IEEE 88, 1491 (2000).
[CrossRef]

F. Guo, T. E. Schlesinger, and D. D. Stancil, Appl. Opt. 39, 324 (2000).
[CrossRef]

1998 (2)

G. S. Kino, in Proc. SPIE 3467, 128–137 (1998).

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
[CrossRef]

1997 (1)

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

1992 (1)

S. M. Block, Nature 360, 493 (1992).
[CrossRef] [PubMed]

1986 (1)

Ashkin, A.

Bjorkholm, J. E.

Block, S. M.

S. M. Block, Nature 360, 493 (1992).
[CrossRef] [PubMed]

Chu, S.

Crozier, K. B.

K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
[CrossRef]

Dziedzic, J. M.

Elings, V. B.

W. Qiang, L. P. Ghislain, and V. B. Elings, Proc. IEEE 88, 1491 (2000).
[CrossRef]

Fletcher, D. A.

K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
[CrossRef]

Ghislain, L. P.

W. Qiang, L. P. Ghislain, and V. B. Elings, Proc. IEEE 88, 1491 (2000).
[CrossRef]

Goodnick, S.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
[CrossRef]

Gunther, A.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
[CrossRef]

Guo, F.

Hayashi, S.

Huisken, J.

A. Rohrbach, J. Huisken, and E. H. K. Stelzer, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 357–386.
[CrossRef]

Ichimura, I.

Kino, G. S.

K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
[CrossRef]

G. S. Kino, in Proc. SPIE 3467, 128–137 (1998).

I. Ichimura, S. Hayashi, and G. S. Kino, Appl. Opt. 36, 4339 (1997).
[CrossRef] [PubMed]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Menendez, J.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil and M. J. Padgett, in Proc. SPIE 4274, 177–182 (2001).

A. T. O’Neil and M. J. Padgett, Opt. Commun. 193(1–6), 45–50 (2001).
[CrossRef]

Ohtsu, M.

M. Ohtsu, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 339–355.
[CrossRef]

Padgett, M. J.

A. T. O’Neil and M. J. Padgett, Opt. Commun. 193(1–6), 45–50 (2001).
[CrossRef]

A. T. O’Neil and M. J. Padgett, in Proc. SPIE 4274, 177–182 (2001).

Poweleit, C. D.

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
[CrossRef]

Qiang, W.

W. Qiang, L. P. Ghislain, and V. B. Elings, Proc. IEEE 88, 1491 (2000).
[CrossRef]

Quate, C. F.

K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
[CrossRef]

Rohrbach, A.

A. Rohrbach, J. Huisken, and E. H. K. Stelzer, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 357–386.
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Schlesinger, T. E.

Stancil, D. D.

Stelzer, E. H. K.

A. Rohrbach, J. Huisken, and E. H. K. Stelzer, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 357–386.
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

C. D. Poweleit, A. Gunther, S. Goodnick, and J. Menendez, Appl. Phys. Lett. 73, 2275 (1998).
[CrossRef]

J. Microelectromech. Syst. (1)

K. B. Crozier, D. A. Fletcher, G. S. Kino, and C. F. Quate, J. Microelectromech. Syst. 11, 470 (2002).
[CrossRef]

Nature (1)

S. M. Block, Nature 360, 493 (1992).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. T. O’Neil and M. J. Padgett, Opt. Commun. 193(1–6), 45–50 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

W. Qiang, L. P. Ghislain, and V. B. Elings, Proc. IEEE 88, 1491 (2000).
[CrossRef]

Proc. SPIE (2)

A. T. O’Neil and M. J. Padgett, in Proc. SPIE 4274, 177–182 (2001).

G. S. Kino, in Proc. SPIE 3467, 128–137 (1998).

Other (2)

M. Ohtsu, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 339–355.
[CrossRef]

A. Rohrbach, J. Huisken, and E. H. K. Stelzer, in Optical Imaging and Microscopy: Techniques and Advanced Systems, F.-J. Kao and P. Torok, eds. (Springer-Verlag, 2003), pp. 357–386.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Subset of SIL lenses from a 300 × 300 array before detachment.

Fig. 2
Fig. 2

Experimental setup of a reflective scan, laser-tweezer-controlled solid immersion microscope: PBS, polarizing beam splitter; BS, beam splitter; MO, microscope objective.

Fig. 3
Fig. 3

Photograph of a laser-tweezer-controlled 10 μ m SIL performing a near-field reflection scan of a chrome grating with a linewidth of 1 μ m and period of 5 μ m .

Fig. 4
Fig. 4

Line scan performed with a λ = 488 nm laser beam focused through a 40 × , 0.6 NA microscope objective with and without the 10 μ m , n = 1.59 , polymer SIL.

Fig. 5
Fig. 5

Line scan performed with a λ = 488 nm laser beam focused through a 60 × , 0.85 NA microscope objective with and without the 10 μ m , n = 1.59 , polymer SIL.

Metrics