Abstract

A novel tunable highly birefringent photonic bandgap fiber (PBGF) is designed theoretically by filling its air holes with high-index material. The transmission band can be continuously tuned by changing the refractive index of the filling material. Accordingly, the tunable modal birefringence and polarization mode dispersion of the PBGFs are investigated by adjusting the refractive index of the filling material. Furthermore, we have also analyzed the effect of surface modes in the photonic bandgap on the characteristics of the tunable PBGFs. The simulation results show the feasibility of constructing birefringence-tunable photonic crystal fibers and related fiber devices in practical applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legre, N. Gisin, J. R. Folkenberg, and M. D. Nielsen, Opt. Express 12, 5931 (2004).
    [CrossRef] [PubMed]
  2. C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
    [CrossRef]
  3. K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 14, 1291 (2002).
    [CrossRef]
  4. M. Shah Alam, K. Saitoh, and M. Koshiba, Opt. Lett. 30, 824 (2005).
    [CrossRef] [PubMed]
  5. T. Schreiber, H. Schultz, O. Schmidt, F. Roser, J. Limpert, and A. Tunnermann, Opt. Express 13, 3637 (2005).
    [CrossRef] [PubMed]
  6. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, Appl. Opt. 44, 2652 (2005).
    [CrossRef] [PubMed]
  7. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Opt. Express 9, 676 (2001).
    [CrossRef] [PubMed]
  8. F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
    [CrossRef]
  9. K. Saitoh and M. Koshiba, Opt. Express 11, 3100 (2003).
    [CrossRef] [PubMed]
  10. N. Shibata, A. Nakazono, and Y. Inoue, J. Lightwave Technol. 23, 1244 (2005).
    [CrossRef]
  11. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
    [CrossRef]
  12. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, Opt. Lett. 27, 695 (2002).
    [CrossRef]

2005 (4)

2004 (4)

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legre, N. Gisin, J. R. Folkenberg, and M. D. Nielsen, Opt. Express 12, 5931 (2004).
[CrossRef] [PubMed]

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

2003 (1)

2002 (2)

2001 (1)

Alam, M. Shah

Berghmans, F.

Demokan, M. S.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Digonnet, M. J. F.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Dudley, J. M.

Fan, S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Folkenberg, J. R.

Fujita, M.

Gisin, N.

Inoue, Y.

Jin, W.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Kawanishi, S.

Kim, H. K.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Kino, G. S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Klimek, J.

Koshiba, M.

Kubota, H.

Legre, M.

Limpert, J.

Lu, C.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Ludvigsen, H.

Makara, M.

Martynkien, T.

Millot, G.

Nakazono, A.

Nasilowski, T.

Nielsen, M. D.

Olszewski, J.

Provino, L.

Ritari, T.

Roser, F.

Saitoh, K.

Sauter, A.

Schmidt, O.

Schreiber, T.

Schultz, H.

Shibata, N.

Shin, J.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Statkiewicz, G.

Suzuki, K.

Szpulak, M.

Tanaka, M.

Thienpont, H.

Tunnermann, A.

Urbanczyk, W.

Wegmuller, M.

Windeler, R. S.

Wojcik, J.

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Yang, X. F.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Zhao, C. L.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 14, 1291 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross section of the birefringent PCF. (b) One quarter of the fiber cross section.

Fig. 2
Fig. 2

Effective indices of the two orthogonal polarization modes versus normalized wavelength in the birefringent PBGFs; refractive indices of the NLC are (a) 1.653, (b) 1.73, and (c) 1.80.

Fig. 3
Fig. 3

Modal birefringence as a function of normalized wavelength (the refractive index of the NLC is considered a parameter).

Fig. 4
Fig. 4

Normalized wavelength dependence of PMD for the PBGFs with high birefringence, where the refractive index of the NLC is taken as a parameter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B = ( λ 2 π ) ( β x β y ) ,
τ p = ( 1 c ) [ B λ ( d B d λ ) ] ,

Metrics