Abstract

We present tunable mechanically formed long-period fiber gratings whose resonance peaks are shifted by the thermo-optic effect of a medium surrounding the fiber cladding. A novel grating formation method and tuning principles that use periodically arrayed metal wire are described. The performance as an active gain equalizer of an erbium-doped fiber amplifier is also reported.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
    [CrossRef]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and R. Davidson, Opt. Lett. 21, 336 (1996).
    [CrossRef] [PubMed]
  3. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  4. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. M. Jang, Opt. Lett. 22, 1769 (1997).
    [CrossRef]
  5. D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
    [CrossRef]
  6. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Show, Opt. Lett. 25, 710 (2000).
    [CrossRef]
  7. Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
    [CrossRef]
  8. I. B. Sohn, J. G. Baek, and J. W. Song, J. Opt. Soc. Korea 7, 64 (2003).
    [CrossRef]
  9. K. R. Sohn and K. T. Kim, IEEE Photon. Technol. Lett. 17, 932 (2005).
    [CrossRef]

2005

K. R. Sohn and K. T. Kim, IEEE Photon. Technol. Lett. 17, 932 (2005).
[CrossRef]

2003

I. B. Sohn, J. G. Baek, and J. W. Song, J. Opt. Soc. Korea 7, 64 (2003).
[CrossRef]

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

2002

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

2000

1999

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

1997

1996

Bae, J.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

Bae, J. K.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

Baek, J. G.

Bergano, N. S.

Bhatia, V.

Choi, S. S.

Davidson, R.

Digonnet, M. J. F.

Erdogan, T.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Jang, J. M.

Jeong, J.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

Jiang, Y.

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

Judkins, J. B.

Kim, J. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

Kim, K. T.

K. R. Sohn and K. T. Kim, IEEE Photon. Technol. Lett. 17, 932 (2005).
[CrossRef]

Kim, S. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

Kino, G. S.

Lee, B. H.

Lee, H. P.

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

Lee, S. B.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. M. Jang, Opt. Lett. 22, 1769 (1997).
[CrossRef]

Lemaire, P. J.

Li, Q.

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

Lin, C.

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

Liu, Y.

Lyons, E.

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

Pedrazzani, J. R.

Savin, S.

Show, H. J.

Sohn, I. B.

Sohn, K. R.

K. R. Sohn and K. T. Kim, IEEE Photon. Technol. Lett. 17, 932 (2005).
[CrossRef]

Song, J. W.

Stegall, D. B.

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Tomov, I.

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

Vengsarkar, A. M.

IEEE Photon. Technol. Lett.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. Jeong, IEEE Photon. Technol. Lett. 15, 407 (2003).
[CrossRef]

D. B. Stegall and T. Erdogan, IEEE Photon. Technol. Lett. 11, 343 (1999).
[CrossRef]

Y. Jiang, Q. Li, C. Lin, E. Lyons, I. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 941 (2002).
[CrossRef]

K. R. Sohn and K. T. Kim, IEEE Photon. Technol. Lett. 17, 932 (2005).
[CrossRef]

J. Opt. Soc. Korea

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Tunable MFLPFGs with periodically arrayed metal wire. (a) Schematic of the proposed MFLPFGs. (b) Cross section.

Fig. 2
Fig. 2

(a) Graphic method for obtaining the resonance peaks in accordance with the variation of the refractive index of the surrounding medium. (b) Shift in resonance wavelengths of each mode.

Fig. 3
Fig. 3

(a) Transmission spectrum measured when n sur is changed by applying electrical power to the metal wire. (b) Spectral shift of each mode as a function of the applied electrical power.

Fig. 4
Fig. 4

Measured transmission spectrum of the gain-flattened EDFA.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = ( n co 01 n cl 0 m ) Λ ,
2 π λ m d cl [ ( n cl ) 2 ( n cl 0 m ) 2 ] 1 2 ( m 3 4 ) 2 π = 2 cos 1 [ ( n cl ) 2 ( n cl 0 m ) 2 ( n cl ) 2 ( n sur ) 2 ] 1 2 ,

Metrics