Abstract

We developed a new type of wire-grid polarizer that has achieved excellent optical performance and reliability. The nanowire-grid polarizer is based on a fully optimized innovative design structure that consists of not only the core nanowire grid but also the surrounding multilayer thin-film structures. The surrounding structures are designed for antireflectivity to provide the best possible efficiency as well as for device reliability to provide the best possible handling robustness and environmental durability. The core nanowire grid utilizes nanosized high-aspect-ratio dielectric walls as a support for forming a high-aspect-ratio metal nanowire grid that significantly reduces energy loss as a result of metal absorption for the transmitted beam while providing a high extinction ratio of the blocked beam. The developed high-quality nanowire-grid polarizer has potential for use in many integrated optical applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Taylor and G. Bucher, Proc. SPIE 1166, 446 (1989).
    [CrossRef]
  2. G. R. Bird and M. Parrish, J. Opt. Soc. Am. 50, 886 (1960).
  3. J. P. Auton and M. C. Hutley, Infrared Phys. 12, 95 (1972).
    [CrossRef]
  4. D. C. Flanders and A. E. White, J. Vac. Sci. Technol. 19, 892 (1981).
    [CrossRef]
  5. B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
    [CrossRef]
  6. ProFlux polarizer data sheets, Moxtek, Inc., www.profluxpolarizer.com .
  7. J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
    [CrossRef]
  8. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
    [CrossRef]
  9. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780 (1986).
    [CrossRef]
  10. J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

2000 (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

1999 (1)

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

1994 (1)

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

1989 (1)

M. Taylor and G. Bucher, Proc. SPIE 1166, 446 (1989).
[CrossRef]

1986 (1)

1981 (1)

D. C. Flanders and A. E. White, J. Vac. Sci. Technol. 19, 892 (1981).
[CrossRef]

1972 (1)

J. P. Auton and M. C. Hutley, Infrared Phys. 12, 95 (1972).
[CrossRef]

1960 (1)

Abraham, M.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Auton, J. P.

J. P. Auton and M. C. Hutley, Infrared Phys. 12, 95 (1972).
[CrossRef]

Bird, G. R.

Bucher, G.

M. Taylor and G. Bucher, Proc. SPIE 1166, 446 (1989).
[CrossRef]

Chen, L.

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Deng, D.

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

Deng, J. D.

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Ehrfeld, W.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Flanders, D. C.

D. C. Flanders and A. E. White, J. Vac. Sci. Technol. 19, 892 (1981).
[CrossRef]

Gale, M. T.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Gaylord, T. K.

Hintermaier, M.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Hutley, M. C.

J. P. Auton and M. C. Hutley, Infrared Phys. 12, 95 (1972).
[CrossRef]

Knapek, E.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Liu, F.

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

Moharam, M. G.

Morf, R.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Parrish, M.

Schablitsky, S.

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Sciortino, P.

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

Stenkamp, B.

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

Tai, S.

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

Taylor, M.

M. Taylor and G. Bucher, Proc. SPIE 1166, 446 (1989).
[CrossRef]

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

White, A. E.

D. C. Flanders and A. E. White, J. Vac. Sci. Technol. 19, 892 (1981).
[CrossRef]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Yu, Z. N.

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, Appl. Phys. Lett. 77, 927 (2000).
[CrossRef]

Infrared Phys. (1)

J. P. Auton and M. C. Hutley, Infrared Phys. 12, 95 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. (1)

D. C. Flanders and A. E. White, J. Vac. Sci. Technol. 19, 892 (1981).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Wang, S. Schablitsky, Z. N. Yu, W. Wu, and S. Y. Chou, J. Vac. Sci. Technol. B 17, 2957 (1999).
[CrossRef]

Proc. SPIE (2)

B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, Proc. SPIE 2213, 288 (1994).
[CrossRef]

M. Taylor and G. Bucher, Proc. SPIE 1166, 446 (1989).
[CrossRef]

Other (2)

J. Wang, L. Chen, S. Tai, D. Deng, P. Sciortino, J. D. Deng, and F. Liu, “Wafer based nano-structure manufacturing for integrated nano-optic devices,” J. Lightwave Technol. (to be published).

ProFlux polarizer data sheets, Moxtek, Inc., www.profluxpolarizer.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a complete nanowire-grid polarizer design.

Fig. 2
Fig. 2

Simulation results of a nanowire-grid polarizer with a design as shown in Fig. 1 for the C band. The solid curve is the transmission for the light polarized along the pass orientation, which is perpendicular to the nanowire grid. The curve with the squares is the Ex. The dotted curve is the TEE for the light polarized along the pass orientation.

Fig. 3
Fig. 3

Two complete nanowire-grid polarizers are shown with cross-sectional views obtained with a scanning electron microscope.

Fig. 4
Fig. 4

Ex versus wavelength for a nanowire-grid polarizer designed for the C band.

Fig. 5
Fig. 5

Transmission spectrum of a nanowire-grid polarizer designed for the C band (solid curve). For comparison, the spectrum of a C-band PolarCor polarizer is also shown (dashed curve). PolarCor is a trademark of Corning.

Fig. 6
Fig. 6

Incident-angle dependence of transmittance TTM of the nanowire-grid polarizer.

Tables (1)

Tables Icon

Table 1 Simulation Results of a Simple Aluminum Wire-Grid Polarizer with a Rectangular Cross Section Sitting on an Infinite Glass Substratea

Metrics