Abstract

Silica-based one-dimensional photonic crystal (1D-PC) is fabricated by use of a high-spatial-frequency grating with input and output surfaces tilted with respect to its periodic direction. An incident beam is coupled with the first photonic band in the second Brillouin zone of the 1D-PC. The output beam angle changes 3° with a wavelength change of 1%. A prototype of an ultrasmall demultiplexer is demonstrated by use of a silica slab waveguide with 1D-PC.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.
  2. T. Nakazawa, S. Kittaka, K. Tsunetomo, K. Kintaka, J. Nishii, and K. Hirao, Opt. Lett. 29, 1188 (2004).
    [CrossRef] [PubMed]
  3. J. Nishii, K. Kintaka, and T. Nakazawa, Appl. Opt. 43, 1327 (2004).
    [CrossRef] [PubMed]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
    [CrossRef]
  5. T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
    [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  7. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
    [CrossRef]

2004 (2)

2002 (1)

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

1991 (1)

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Baba, T.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Das, S. K.

B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.

Eichenbaum, B. R.

B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.

Hirao, K.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kintaka, K.

Kittaka, S.

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Nakamura, M.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Nakazawa, T.

Nishii, J.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Plihal, M.

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Tsunetomo, K.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[CrossRef]

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Bird’s-eye view of normalized frequency ωa/2πc in the first photonic band for TE-polarized light in a high-spatial-frequency grating, where ω, a, and c are angular frequency, grating pitch, and light velocity in vacuum, respectively. Two incident beams with different wavelengths λA and λB are coupled with bands at P and Q, respectively, in the second Brillouin zone. The input and output surfaces of the grating are tilted 45° from the grating period.

Fig. 2
Fig. 2

(a) Schematic of the beam propagation of two incident beams with different wavelengths λA and λB in a high-spatial-frequency grating with 45° tilted input and output surfaces. Incident angle θ is 15°. (b), (c) Light intensity distribution calculated by the FEM for two different normalized frequencies a/λ: (b) 0.46, (c) 0.48.

Fig. 3
Fig. 3

(a) Schematic 1D-PC embedded in the slab waveguide. (b), (c) Scanning electron microscope images of cross sections (b) before and (c) at an early stage of overcladding. Overcladding was continued until the thickness reached 10 µm.

Fig. 4
Fig. 4

Schematic layout of a proposed demultiplexer with a 1D-PC embedded in the slab waveguide. PMF, polarization-maintaining fiber; SML, SELFOC MicroLens; SMF, single-mode fiber.

Fig. 5
Fig. 5

Change in angle of an output signal from the 1D-PC embedded in the slab waveguide. The Y axis indicates the difference in the output angle from that at 1515 nm.

Fig. 6
Fig. 6

Passband characteristics of the demultiplexer with a 1D-PC embedded in the slab waveguide.

Metrics