Abstract

We present experimental demonstrations of spectral diversity filters with spherical beam volume holograms for multimodal multiplex spectroscopy. Major properties of filters under diffuse-light illumination are discussed. The comparisons of spectral diversity between the transmission geometry holograms and the reflection geometry holograms are also studied. The results show that there is a trade-off between the degree of the spatial coherence of the source and the spectral diversity of the filter. We also conclude that the reflection geometry holograms have better spectral diversity and less sensitivity to the spatial coherence of the source.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, Z. Wang, M. E. Sullivan, D. J. Brady, S. H. Foulger, and A. Adibi, Opt. Express 11, 2126 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  2. A. Karbaschi, C. Hsieh, O. Momtahan, A. Adibi, M. E. Sullivan, and D. J. Brady, Opt. Express 12, 3018 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  3. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, New York, 2000), pp. 171–197.
  4. D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
    [CrossRef]
  5. G. Barbastathis and D. Brady, Proc. IEEE 87, 2098 (1999).
    [CrossRef]
  6. G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
    [CrossRef] [PubMed]

2004

2003

1999

G. Barbastathis and D. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

1996

1995

D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
[CrossRef]

Adibi, A.

Barbastathis, G.

Brady, D.

G. Barbastathis and D. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Brady, D. J.

Foulger, S. H.

Hsieh, C.

Karbaschi, A.

Levene, M.

Mok, F.

D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
[CrossRef]

Momtahan, O.

Psaltis, D.

Sullivan, M. E.

Wang, Z.

Xu, Z.

Appl. Opt.

Opt. Express

Proc. IEEE

G. Barbastathis and D. Brady, Proc. IEEE 87, 2098 (1999).
[CrossRef]

Sci. Am.

D. Psaltis and F. Mok, Sci. Am. 273, 70 (1995).
[CrossRef]

Other

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, New York, 2000), pp. 171–197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for (a) recording transmission geometry hologram and (b) measuring the transmitted spectrum of the holographic SDF.

Fig. 2
Fig. 2

Transmitted spectrum at three different locations A, B, and C [specified in Fig. 1(b) with D=8 cm (which is chosen arbitrarily), a=β=1.2 mm, and no diffuser present] on the output plane of the transmission geometry hologram.

Fig. 3
Fig. 3

Effect of the diffuser on the transmitted spectrum for (a) transmission geometry holograms and (b) reflection geometry holograms both measured between points B and C in Fig. 1(b) with D=16 cm. The diffuser is located at d=15.5 cm in front of the holograms. D and d are chosen large enough to clearly show the effect of the diffuser. The difference between the strengths and the widths of the transmission dips for the two recording geometries is clear. Similar behavior exists at other output points such as B and C.

Fig. 4
Fig. 4

Effect of the incident beam divergence angle on the bandwidth of the transmission dip. With no diffuser present, the divergence angle of the incident beam is modified by changing D in Fig. 1(b). The measurement is made at point C shown in Fig. 1(b).

Fig. 5
Fig. 5

Effect of in-plane x shift of the reading point source on the transmission dip wavelength for transmission geometry holograms and reflection geometry holograms. The distance between the point source and the hologram is D=0.93 cm, and the diffuser is removed from the setup in Fig. 1(b). D is chosen small enough to obtain a practical range for in-plane x shift. The measurement is made at point C shown in Fig. 1(b).

Metrics