Abstract

We show that, when a turbid medium with a layered fluorophore distribution is excited by linearly polarized light, measurement of angle-resolved polarized fluorescence can provide depth-resolved fluorescence measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
    [CrossRef] [PubMed]
  2. D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
    [CrossRef] [PubMed]
  3. L. Quan and N. Ramanujam, Opt. Lett. 27, 104 (2002).
    [CrossRef]
  4. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, Opt. Lett. 28, 120 (2003).
    [CrossRef] [PubMed]
  5. S. K. Mohanty, N. Ghosh, S. K. Majumder, and P. K. Gupta, Appl. Opt. 40, 1147 (2001).
    [CrossRef]
  6. N. Ghosh, S. K. Majumder, and P. K. Gupta, Opt. Lett. 27, 2007 (2002).
    [CrossRef]
  7. N. Ghosh, A. Datta, and P. K. Gupta, Appl. Spectrosc. 56, 1094 (2002).
    [CrossRef]
  8. N. Ghosh, S. K. Majumder, and P. K. Gupta, Phys. Rev. E 65, 26608 (2002).
    [CrossRef]
  9. M. G. Muller, I. Gergakoudi, Q. Zhang, J. Wu, and M. S. Feld, Appl. Opt. 40, 4633 (2001).
    [CrossRef]

2003 (1)

2002 (4)

2001 (4)

M. G. Muller, I. Gergakoudi, Q. Zhang, J. Wu, and M. S. Feld, Appl. Opt. 40, 4633 (2001).
[CrossRef]

S. K. Mohanty, N. Ghosh, S. K. Majumder, and P. K. Gupta, Appl. Opt. 40, 1147 (2001).
[CrossRef]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Datta, A.

Drezek, R.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Ediger, M. N.

Farrell, T. J.

D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
[CrossRef] [PubMed]

Feld, M. S.

Follen, M.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Gergakoudi, I.

Ghosh, N.

Gupta, P. K.

Hyde, D. E.

D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
[CrossRef] [PubMed]

Kortum, R. R.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Lotan, R.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Majumder, S. K.

Malpica, A.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Matchette, L. S.

Mohanty, S. K.

Muller, M. G.

Patterson, M. S.

D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
[CrossRef] [PubMed]

Pfefer, T. J.

Quan, L.

Ramanujam, N.

Ross, A. M.

Sokolov, K.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Utzinger, U.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Wilson, B. C.

D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
[CrossRef] [PubMed]

Wu, J.

Zhang, Q.

Appl. Opt. (2)

Appl. Spectrosc. (1)

Opt. Lett. (3)

Photochem. Photobiol. (1)

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. R. Kortum, Photochem. Photobiol. 73, 636 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, Phys. Med. Biol. 46, 369 (2001).
[CrossRef] [PubMed]

Phys. Rev. E (1)

N. Ghosh, S. K. Majumder, and P. K. Gupta, Phys. Rev. E 65, 26608 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

440-nm-excited fluorescence spectra from the two-layered tissue phantom recorded at different Δθ. The spectra have been normalized with respect to the intensity at 520 nm. The solid curve corresponds to the polarized component of the fluorescence Ifl0°,λ-Ifl90°,λ. Inset, 440-nm-excited unpolarized fluorescence spectra from an aqueous nonscattering solution of 20µM riboflavin (dotted curve) and 20µM R6G (solid curve). The values for μs, μa, and g at 520 nm for the top and the bottom layers were 3.5 mm-1, 0.012 mm-1, and 0.92 and 3.5 mm-1, 0.15 mm-1, and 0.92, respectively. F.I., fluorescence intensity.

Fig. 2
Fig. 2

(a) Dependence on Δθ of the 440-nm-excited fluorescence intensity at 520 nm from the two-layered tissue phantom with different concentrations of riboflavin. Open circles represent the side with the lower fluorophore concentration (20 µM) facing the beam; filled circles represent the side with the higher fluorophore concentration (40 µM) facing the beam. The values for μs, μa, and g at 520 nm for the two layers were 3.5 mm-1, 0.012 mm-1, and 0.92 and 3.5 mm-1, 0.025 mm-1, and 0.92, respectively. (b) Fluorescence intensity recorded at different Δθ for the same tissue phantom, normalized by the corresponding elastic scattering intensity InflΔθ,520 nm=IflΔθ,520 nm/IesΔθ,520 nm. Inset, 440-nm-excited unpolarized fluorescence spectra from an aqueous nonscattering solution of riboflavin with a concentration of 20 (dashed curve) and 40 µM (solid curve).

Fig. 3
Fig. 3

Dependence on Δθ of the 340-nm-excited elastic scattering normalized fluorescence spectra InflΔθ,λ=IflΔθ,λ/IesΔθ,λ from an oral tissue sample from a mouse. The difference spectrum InflΔθ=0°,λ-InflΔθ=90°,λ is displayed by a solid curve. The values for μs, μa, and g at 440 nm for this tissue were 20 mm-1, 0.3 mm-1, and 0.88, respectively.

Metrics