Abstract

We demonstrate, for the first time to our knowledge, three-dimensional (3D) trapping and manipulation of microscopic objects by use of supercontinuum white light generated from photonic crystal fibers. Furthermore, we show that the supercontinuum white-light optical tweezers used have the unique capability to perform optical scattering spectroscopy of a single 3D trapped object over a broad wavelength range. These novel tweezers can potentially open a promising avenue toward simultaneous manipulation and characterization of microscopic objects.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
    [CrossRef]
  3. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  4. K. Ajito and K. Torimitsu, Trends Anal. Chem. 20, 255 (2001).
    [CrossRef]
  5. C. Xie and Y. Li, Appl. Phys. Lett. 81, 951 (2002).
    [CrossRef]
  6. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
    [CrossRef]
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  9. K. Shi, P. Li, S. Yin, and Z. Liu, Opt. Express 12, 2096 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
    [CrossRef]
  11. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
    [CrossRef]
  12. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

2004

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

K. Shi, P. Li, S. Yin, and Z. Liu, Opt. Express 12, 2096 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2003

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

2002

C. Xie and Y. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

2001

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

K. Ajito and K. Torimitsu, Trends Anal. Chem. 20, 255 (2001).
[CrossRef]

2000

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

1996

1986

Ajito, K.

K. Ajito and K. Torimitsu, Trends Anal. Chem. 20, 255 (2001).
[CrossRef]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Ashkin, A.

Atkin, D. M.

Birks, T. A.

Bjorkholm, J. E.

Chu, S.

Dholakia, K.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Dziedzic, J. M.

Enger, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Goksor, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Kall, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Knight, J. C.

Li, P.

Li, Y.

C. Xie and Y. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

Liu, Z.

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

Shi, K.

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Stentz, A. J.

Svedberg, F.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Torimitsu, K.

K. Ajito and K. Torimitsu, Trends Anal. Chem. 20, 255 (2001).
[CrossRef]

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Windeler, R. S.

Xie, C.

C. Xie and Y. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

Yin, S.

Appl. Phys. Lett.

C. Xie and Y. Li, Appl. Phys. Lett. 81, 951 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

Nano Lett.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, Nano Lett. 4, 115 (2004).
[CrossRef]

Nature

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Opt. Commun.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun. 197, 239 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Trends Anal. Chem.

K. Ajito and K. Torimitsu, Trends Anal. Chem. 20, 255 (2001).
[CrossRef]

Other

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Supercontinuum spectra: (a) spectrum of supercontinuum generated from subnanosecond laser pulse (first supercontinuum source) and (b) spectrum of supercontinuum generated from femtosecond laser pulses (the second supercontinuum source).

Fig. 2
Fig. 2

Trapping and manipulation of a microsphere and a microrod by use of supercontinuum white light: (a) A 2µm polymer microsphere was three-dimensionally trapped by the white-light tweezer. Frames 1–3 show the process of a sphere being trapped by tightly focused supercontinuum white light, frames 4–6 show trapping in the lateral plane, and frames 7–9 demonstrate trapping in the axial direction. (b) Collapse of eight 5µm microspheres lifted by the inverted chromatic white-light tweezer after blocking the white light. (c) Falling of a microrod that was initially lifted and aligned by the inverted chromatic white-light tweezer after blocking the white light.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup. (a) Background when no microsphere was trapped. (b) Scattering pattern when a 2µm latex microsphere was three dimensionally trapped by an inverted white-light tweezer using a second supercontinuum source.

Fig. 4
Fig. 4

Scattering efficiency curves: (a), (b), and (c) are the scattering efficiencies of three dimensionally trapped microspheres of 1.5-, 2.0-, and 2.5µm diameter, respectively. The refractive index is 1.59 at λ=589 nm. The wavelength resolution is 10 nm.

Metrics