Abstract

The utilization of phase-mask technology for the fabrication of an analog micro-optics profile with a thick photoresist was investigated. A two-dimensional phase-grating mask with π phase depth can produce a desired analog variation of exposure intensity, which allows one to vary the thickness of an analog photoresist after its exposure by a photolithographic stepper and development of the photoresist. A two-dimensional phase-grating mask of square pixels was simulated, designed, and fabricated. The fabrication of analog micro-optics in a thick SPR-220 photoresist by use of this phase mask was also demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography, Vol. TT47 of SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2001), Chap. 3.
    [CrossRef]
  2. W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.
  3. M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
    [CrossRef]
  4. B. Morgan and C. M. Waits, IEEE J. Microelectromech. Syst. 13, 113 (2004).
    [CrossRef]

2004 (1)

B. Morgan and C. M. Waits, IEEE J. Microelectromech. Syst. 13, 113 (2004).
[CrossRef]

2002 (1)

M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
[CrossRef]

Henke, W.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Hockel, H.

M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
[CrossRef]

Hoppe, W.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Johnson, E. G.

M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
[CrossRef]

Mohammed, W.

M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
[CrossRef]

Morgan, B.

B. Morgan and C. M. Waits, IEEE J. Microelectromech. Syst. 13, 113 (2004).
[CrossRef]

Pitchumani, M.

M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
[CrossRef]

Quenzer, H. J.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Staudt-Fischbach, P.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Wagner, B.

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Waits, C. M.

B. Morgan and C. M. Waits, IEEE J. Microelectromech. Syst. 13, 113 (2004).
[CrossRef]

Wong, A. K.-K.

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography, Vol. TT47 of SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2001), Chap. 3.
[CrossRef]

Appl. Opt. (1)

M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, Appl. Opt. 41, 10 (2002).
[CrossRef]

IEEE J. Microelectromech. Syst. (1)

B. Morgan and C. M. Waits, IEEE J. Microelectromech. Syst. 13, 113 (2004).
[CrossRef]

Other (2)

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography, Vol. TT47 of SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2001), Chap. 3.
[CrossRef]

W. Henke, W. Hoppe, H. J. Quenzer, P. Staudt-Fischbach, and B. Wagner, in Proceedings of Micro Electro Mechanical Systems 1994 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 205–210.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single-period design of two duty cycles for the phase-grating mask.

Fig. 2
Fig. 2

Microscope picture of the 2D phase grating for a positive microlens.

Fig. 3
Fig. 3

Comparison of experimental and analytical lens and prism profiles.

Fig. 4
Fig. 4

Scanning electron microscope images of the microlens and the prism.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

pc=MλNA1+σ,
Fw=2a2Λ2=2w2.
tx,y=2 rectx-a/2a,y-a/2a+2 rectx-Λ-a/2a,x-Λ-a/2a-11Λ2 combxΛ,yΛ.
Iw=16w4-8w2+1,    w=00.5.
Dw=I0Tb+IwTe.

Metrics