Abstract

The recently developed theory that unifies the treatments of polarization and coherence of random electromagnetic beams is applied to study field correlations in Young’s interference experiment. It is found that at certain pairs of points the transmitted field is spatially fully coherent, irrespective of the state of coherence and polarization of the field that is incident on the two pinholes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. E. Wolf, Opt. Lett. 28, 1078 (2003).
    [CrossRef] [PubMed]
  3. H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2004).
    [CrossRef]
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
    [CrossRef]
  5. M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004), and references therein.
    [CrossRef]
  6. J. Tervo, T. Setala, and A. T. Friberg, Opt. Express 11, 1137 (2003); http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. H. F. Schouten, T. D. Visser, and E. Wolf, Opt. Lett. 28, 1182 (2003).
    [CrossRef] [PubMed]

2004

2003

Dogariu, A.

Friberg, A. T.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Mujat, M.

Roychowdhury, H.

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2004).
[CrossRef]

Schouten, H. F.

Setala, T.

Tervo, J.

Visser, T. D.

Wolf, E.

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2004).
[CrossRef]

M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004), and references therein.
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

E. Wolf, Opt. Lett. 28, 1078 (2003).
[CrossRef] [PubMed]

H. F. Schouten, T. D. Visser, and E. Wolf, Opt. Lett. 28, 1182 (2003).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Notation relating to Young’s interference experiment.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ηρ1,ρ2,ω=Tr W0ρ1,ρ2,ωTr W0ρ1,ρ1,ωTr W0ρ2,ρ2,ω1/2,
W0ρ1,ρ2,ω=Wxx0ρ1,ρ2,ωWxy0ρ1,ρ2,ωWyx0ρ1,ρ2,ωWyy0ρ1,ρ2,ω,
Wij0ρ1,ρ2,ω=Ei*ρ1,ωEjρ2,ω, i,j=x,y.
ρ1=a,0,0,
ρ2=-a,0,0
Exr1=KExρ1expikR11R11+Exρ2expikR21R21,
Eyr1=KEyρ1expikR11R11+Eyρ2expikR21R21,
Exr2=KExρ1expikR12R12+Exρ2expikR22R22,
Eyr2=KEyρ1expikR12R12+Eyρ2expikR22R22,
r1=r1s1,
r2=r2s2,
Rijrj-ρi·sj.
r1r2=R.
s1x=s2x.
six=sin θicos ϕi    i=1,2,
Wxxr1,r2=K2expikr2-r1R2Wxx0ρ1,ρ1+Wxx0ρ2,ρ2+2 ReWxx0ρ1,ρ2expi2kas1x,
Wyyr1,r2=K2expikr2-r1R2Wyy0ρ1,ρ1+Wyy0ρ2,ρ2+2 ReWyy0ρ1,ρ2expi2kas1x.
Wxxr1,r1=Wxxr2,r2,
=K2R2Wxx0ρ1,ρ1+Wxx0ρ2,ρ2+2 ReWxx0ρ1,ρ2expi2kas1x,
Wyyr1,r1=Wyyr2,r2,
=K2R2Wyy0ρ1,ρ1+Wyy0ρ2,ρ2+2 ReWyy0ρ1,ρ2expi2kas1x.
ηP1,P2,ω=expikr2-r1 if s1x=s2x.
ηP1,P2,ω=1  s1x=s2x,  s1y=-s2y.

Metrics