Abstract

Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson–Faraday interferometers, in which ordinary mirrors are replaced with 90° Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175km. Through a 125km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.
  2. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
    [CrossRef] [PubMed]
  3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
    [CrossRef]
  4. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
    [CrossRef]
  5. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
    [CrossRef] [PubMed]
  6. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
    [CrossRef]
  7. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
    [CrossRef]
  8. T. Honjo, K. Inoue, and H. Takahashi, Opt. Lett. 29, 2797 (2004).
    [CrossRef] [PubMed]
  9. Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
    [CrossRef]

2005

Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
[CrossRef]

2004

T. Honjo, K. Inoue, and H. Takahashi, Opt. Lett. 29, 2797 (2004).
[CrossRef] [PubMed]

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

2002

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

1997

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

1992

C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
[CrossRef] [PubMed]

1991

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.

Boileau, J. C.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

Brassard, G.

C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.

Ekert, A. K.

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Gisin, N.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Gorman, P. M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Gottesman, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

Gui, Y. Z.

Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
[CrossRef]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

Guo, G. C.

Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
[CrossRef]

Halder, M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Han, Z. F.

Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
[CrossRef]

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Honjo, T.

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Inoue, K.

Kurtsiefer, C.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Laflamme, R.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

Mo, X. F.

Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
[CrossRef]

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Poulin, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

Rarity, J. G.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Ribordy, G.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

Spekkens, R. W.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

Takahashi, H.

Tapster, P. R.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Tittel, W.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Zarda, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

Zbinden, H.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Appl. Phys. Lett.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).
[CrossRef]

Z. F. Han, X. F. Mo, Y. Z. Gui, and G. C. Guo, Appl. Phys. Lett. 86, 221103 (2005).
[CrossRef]

Nature

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, Nature 419, 450 (2002).
[CrossRef]

New J. Phys.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).
[CrossRef]

C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
[CrossRef] [PubMed]

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Other

C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the Faraday–Michelson QKD system: L, pulsed laser diode; other abbreviations defined in text.

Fig. 2
Fig. 2

(a) Visibility of interference fringe as a function of time. Inset, typical interference fringe measured over 175 km fiber in the lab. (b) Output intensity of Bob’s interferometer as a function of time, as measured with an optical powermeter. Because of slow response, the measurement result is the total power of the interference and the noninterference pulses.

Fig. 3
Fig. 3

QBER as a function of fiber length. Stars, measured QBER; solid curve, theoretical QBER.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

FM = 1 2 [ 1 1 1 1 ] [ 1 0 0 1 ] 1 2 [ 1 1 1 1 ] = [ 0 1 1 0 ] .
forward T = [ cos θ sin θ sin θ cos θ ] [ exp ( i φ o ) 0 0 exp ( i φ e ) ] [ cos θ sin θ sin θ cos θ ] ,
backward T = [ cos θ sin θ sin θ cos θ ] [ exp ( i φ o ) 0 0 exp ( i φ e ) ] [ cos θ sin θ sin θ cos θ ] ,
T = T FM T = exp ( i φ ) FM ,
T 1 = ( S b FM S b ) QC ( L a PM a FM PM a L a ) = exp [ i ( φ l a + φ s b + φ a ) ] FM ,
T 2 = ( L b PM b FM PM b L b ) QC ( S a FM S a ) = exp [ i ( φ s a + φ l b + φ b ) ] FM ,
E ̃ out = κ 4 { exp [ i ( φ l a + φ s b + φ a ) ] + exp [ i ( φ s a + φ l b + φ b ) ] } FM E ̃ in ,
I out = κ 2 8 [ 1 + cos ( Δ φ a + Δ φ b + Δ φ a b ) ] I in = κ 2 8 ( 1 + cos Δ φ ) I in ,
η = I out max I out max I out max + I out max = ( κ 2 I in 4 ) 0 ( κ 2 I in 4 ) + 0 = 1 .

Metrics