Abstract

The structure of an inorganic chiral medium represented as a stack of identical form-birefringent layers that twist steadily with increasing thickness is perturbed by realigning a fraction of each layer to a fixed direction. Experimental results show that the resulting chiral–birefringent composite medium exhibits Bragg resonance with elliptically polarized light, and simulations indicate that Bragg reflectors can be designed for any polarization including linear.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics, Press Monograph PM143 (SPIE, 2005).
    [CrossRef]
  2. Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, Opt. Eng. (Bellingham) 39, 1863 (2000).
    [CrossRef]
  3. S. R. Kennedy and M. J. Brett, J. Vac. Sci. Technol. B 22, 1184 (2004).
    [CrossRef]
  4. A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge U. Press, 1993).
    [CrossRef]
  5. M. Srinivasarao, Chem. Rev. (Washington, D.C.) 99, 1935 (1999).
    [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  7. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
    [CrossRef]
  8. I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
    [CrossRef]
  9. A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
    [CrossRef]
  10. J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).
    [CrossRef]

2004 (2)

S. R. Kennedy and M. J. Brett, J. Vac. Sci. Technol. B 22, 1184 (2004).
[CrossRef]

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

2003 (1)

J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

2002 (1)

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

2000 (1)

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, Opt. Eng. (Bellingham) 39, 1863 (2000).
[CrossRef]

1999 (1)

M. Srinivasarao, Chem. Rev. (Washington, D.C.) 99, 1935 (1999).
[CrossRef]

Arnold, M.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Brett, M. J.

S. R. Kennedy and M. J. Brett, J. Vac. Sci. Technol. B 22, 1184 (2004).
[CrossRef]

Chao, N.

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Churikov, V. M.

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

Genack, A. Z.

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, Opt. Eng. (Bellingham) 39, 1863 (2000).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
[CrossRef]

Kennedy, S. R.

S. R. Kennedy and M. J. Brett, J. Vac. Sci. Technol. B 22, 1184 (2004).
[CrossRef]

Kopp, V. I.

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Lakhtakia, A.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, Opt. Eng. (Bellingham) 39, 1863 (2000).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics, Press Monograph PM143 (SPIE, 2005).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics, Press Monograph PM143 (SPIE, 2005).
[CrossRef]

Neugroshl, D.

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Neville, A. C.

A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge U. Press, 1993).
[CrossRef]

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

Singer, J.

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Srinivasarao, M.

M. Srinivasarao, Chem. Rev. (Washington, D.C.) 99, 1935 (1999).
[CrossRef]

Stille, W.

J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, Opt. Eng. (Bellingham) 39, 1863 (2000).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

M. Srinivasarao, Chem. Rev. (Washington, D.C.) 99, 1935 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. R. Kennedy and M. J. Brett, J. Vac. Sci. Technol. B 22, 1184 (2004).
[CrossRef]

Opt. Commun. (1)

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, Opt. Commun. 210, 201 (2002).
[CrossRef]

Opt. Eng. (Bellingham) (1)

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, Opt. Eng. (Bellingham) 39, 1863 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

Proc. SPIE (1)

A. Z. Genack, V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, and D. Neugroshl, Proc. SPIE 5508, 57 (2004).
[CrossRef]

Other (4)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics, Press Monograph PM143 (SPIE, 2005).
[CrossRef]

A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge U. Press, 1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

One dielectric period of (a) a standard chiral structure represented as a twisted stack of birefringent layers and (b) a chiral–birefringent composite material with the same Bragg wavelength. The bars and dots mark the fast axes of the layers and sublayers, respectively.

Fig. 2
Fig. 2

Apparatus for depositing chiral–birefringent composite materials.

Fig. 3
Fig. 3

Apparatus for recording the copolarized reflectance of chiral–birefringent composite coatings.

Fig. 4
Fig. 4

Copolarized reflectance spectrum recorded for a right-handed birefringent–chiral composite coating with fabrication parameters θ v = 63 ° , Δ ξ = 14.4 ° , f B = 0.3 , N = 12 , n C = 1 , and n S = 1.52 .

Fig. 5
Fig. 5

Copolarized reflectance map recorded for a right-handed chiral–birefringent composite coating with fabrication parameters θ v = 63 ° , f B = 0.3 , N = 12 , and n C = 1 , n S = 1.52 .

Fig. 6
Fig. 6

Normalized copolarized reflectance profiles recorded at λ Br , α Br for (a) the chiral–birefringent composite coating fabricated with f B = 0.3 , N = 12 , air and glass bounding media; (b) a simulation of a similar coating with f B = 0 , N = 12 ; (c) an index-matched simulation with f B = 0 , N = 50 that positions the Bragg resonance at χ = π 4 (right-handed CP); and (d) an index-matched simulation with f B = 0.5 , N = 50 that positions the Bragg resonance at χ = 0 (LP).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0 , π ; 0 , π ; Δ ξ , Δ ξ + π ; 0 , π ; 2 Δ ξ , 2 Δ ξ + π ; 0 , π ; ,

Metrics