Abstract

Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1mm2 cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Takamoto, in International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, Proc. NREL/CD-520-35349 (National Renewable Energy Laboratory, 2004).
  2. Spectrolab, Inc., 12500 Gladstone Avenue, Sylmar, California, www.spectrolab.com—technical prospectuses and private communications (2005).
  3. Z. I. Alferov and V. D. Rumyantsev, in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 2.
  4. J. M. Gordon and D. Feuermann, Appl. Opt. 44, 2327 (2005).
    [CrossRef] [PubMed]
  5. K. Schwarzschild, Abh. Akad. Wiss. Goettingen Math.-Phys. Kl. 4, Nos: 1–3 (1905-1906).
  6. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).
  7. Two limiting cases are worth noting: (a) the ?1??2 concentrator is a cylinder (no concentration boost from the terminal stage), allowing higher NA1, for the coplanar design with the focal plane closer to the secondary; and (b) the aplanatic unit is without a terminal nonimaging concentrator, while retaining coplanarity as well as the focal plane at the vertex of the primary (concentration is still enhanced by a factor of n2 relative to the corresponding air-filled device).
  8. J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
    [CrossRef]
  9. J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
    [CrossRef]
  10. K. Araki, H. Uozumi, and M. Yamaguchi, in 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 1568–1571.
  11. J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
    [CrossRef]

2005 (3)

J. M. Gordon and D. Feuermann, Appl. Opt. 44, 2327 (2005).
[CrossRef] [PubMed]

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
[CrossRef]

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

2004 (1)

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
[CrossRef]

Alferov, Z. I.

Z. I. Alferov and V. D. Rumyantsev, in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 2.

Araki, K.

K. Araki, H. Uozumi, and M. Yamaguchi, in 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 1568–1571.

Benítez, P.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Feuermann, D.

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
[CrossRef]

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

J. M. Gordon and D. Feuermann, Appl. Opt. 44, 2327 (2005).
[CrossRef] [PubMed]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
[CrossRef]

Gordon, J. M.

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
[CrossRef]

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

J. M. Gordon and D. Feuermann, Appl. Opt. 44, 2327 (2005).
[CrossRef] [PubMed]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
[CrossRef]

Huleihil, M.

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
[CrossRef]

Israeli, T.

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

Katz, E. A.

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
[CrossRef]

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
[CrossRef]

Miñano, J. C.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Reddy, T. A.

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

Rumyantsev, V. D.

Z. I. Alferov and V. D. Rumyantsev, in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 2.

Schwarzschild, K.

K. Schwarzschild, Abh. Akad. Wiss. Goettingen Math.-Phys. Kl. 4, Nos: 1–3 (1905-1906).

Scoles, K.

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

Sun, J.

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

Takamoto, T.

T. Takamoto, in International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, Proc. NREL/CD-520-35349 (National Renewable Energy Laboratory, 2004).

Tassew, W.

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
[CrossRef]

Uozumi, H.

K. Araki, H. Uozumi, and M. Yamaguchi, in 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 1568–1571.

Winston, R.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Yamaguchi, M.

K. Araki, H. Uozumi, and M. Yamaguchi, in 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 1568–1571.

Abh. Akad. Wiss. Goettingen Math.-Phys. Kl. (1)

K. Schwarzschild, Abh. Akad. Wiss. Goettingen Math.-Phys. Kl. 4, Nos: 1–3 (1905-1906).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. M. Gordon, E. A. Katz, D. Feuermann, and M. Huleihil, Appl. Phys. Lett. 84, 3642 (2004).
[CrossRef]

J. M. Gordon, E. A. Katz, W. Tassew, and D. Feuermann, Appl. Phys. Lett. 86, 073508 (2005).
[CrossRef]

J. Sol. Energy Eng. (1)

J. Sun, T. Israeli, T. A. Reddy, K. Scoles, J. M. Gordon, and D. Feuermann, J. Sol. Energy Eng. 127, 138 (2005).
[CrossRef]

Other (6)

K. Araki, H. Uozumi, and M. Yamaguchi, in 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 1568–1571.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Two limiting cases are worth noting: (a) the ?1??2 concentrator is a cylinder (no concentration boost from the terminal stage), allowing higher NA1, for the coplanar design with the focal plane closer to the secondary; and (b) the aplanatic unit is without a terminal nonimaging concentrator, while retaining coplanarity as well as the focal plane at the vertex of the primary (concentration is still enhanced by a factor of n2 relative to the corresponding air-filled device).

T. Takamoto, in International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, Proc. NREL/CD-520-35349 (National Renewable Energy Laboratory, 2004).

Spectrolab, Inc., 12500 Gladstone Avenue, Sylmar, California, www.spectrolab.com—technical prospectuses and private communications (2005).

Z. I. Alferov and V. D. Rumyantsev, in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Aplanatic planar imaging concentrator with two mirrored surfaces tailored to completely eliminate spherical and comatic aberration.[4] Filling the unit with a transparent dielectric (e.g., glass) increases attainable flux by a factor of n 2 . A θ 1 θ 2 nonimaging[6] final stage considerably boosts flux concentration at no increase in device depth. In this illustration, θ 1 = 24 ° , θ 2 = 72 ° , shading is 3%, and the photovoltaic absorber is located at the vertex of the primary.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ 1 + θ 2 π 2 θ c ,
δ θ 0 = tan ( θ 0 ) δ n n ,
NA 0 = n sin ( θ 2 ) C g ,

Metrics