Abstract

We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250nm is readily achieved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2001).
    [CrossRef]
  3. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, J. Lightwave Technol. 23, 13 (2005).
    [CrossRef]
  4. M. Prabhu, N. S. Kim, and K. Ueda, Jpn. J. Appl. Phys. Part 1 39, L291 (2000).
    [CrossRef]
  5. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, Opt. Lett. 28, 1353 (2003).
    [CrossRef] [PubMed]
  6. W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
    [CrossRef]
  7. A. K. Abeeluck and C. Headley, Opt. Lett. 30, 61 (2005).
    [CrossRef] [PubMed]
  8. V. Roy and P. A. Vachon, in Quantum Electronics and Laser Science (QELS), Vol. 57 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper QThF5.

2005 (2)

2004 (1)

W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
[CrossRef]

2003 (2)

K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, Opt. Lett. 28, 1353 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

M. Prabhu, N. S. Kim, and K. Ueda, Jpn. J. Appl. Phys. Part 1 39, L291 (2000).
[CrossRef]

Abeeluck, A. K.

Avdokhin, A. V.

Chudoba, C.

Feder, K. S.

Fujimoto, J. G.

Ghanta, R. K.

Hartl, I.

Headley, C.

Kim, N. S.

M. Prabhu, N. S. Kim, and K. Ueda, Jpn. J. Appl. Phys. Part 1 39, L291 (2000).
[CrossRef]

Ko, T. H.

Li, X. D.

Liu, X.

W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
[CrossRef]

Mori, K.

K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
[CrossRef]

Nicholson, J. W.

Ohara, T.

K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
[CrossRef]

Peng, J.

W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
[CrossRef]

Popov, S. V.

Prabhu, M.

M. Prabhu, N. S. Kim, and K. Ueda, Jpn. J. Appl. Phys. Part 1 39, L291 (2000).
[CrossRef]

Ranka, J. K.

Roy, V.

V. Roy and P. A. Vachon, in Quantum Electronics and Laser Science (QELS), Vol. 57 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper QThF5.

Sato, K.

K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
[CrossRef]

Takara, H.

K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
[CrossRef]

Taylor, J. R.

Ueda, K.

M. Prabhu, N. S. Kim, and K. Ueda, Jpn. J. Appl. Phys. Part 1 39, L291 (2000).
[CrossRef]

Vachon, P. A.

V. Roy and P. A. Vachon, in Quantum Electronics and Laser Science (QELS), Vol. 57 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper QThF5.

Wang, Y.

W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

Yablon, A. D.

Zhang, W.

W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
[CrossRef]

Electron. Lett. (1)

K. Mori, K. Sato, H. Takara, and T. Ohara, Electron. Lett. 39, 544 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. Part 1 (1)

M. Prabhu, N. S. Kim, and K. Ueda, Jpn. J. Appl. Phys. Part 1 39, L291 (2000).
[CrossRef]

Opt. Commun. (1)

W. Zhang, Y. Wang, J. Peng, and X. Liu, Opt. Commun. 231, 371 (2004).
[CrossRef]

Opt. Lett. (3)

Other (1)

V. Roy and P. A. Vachon, in Quantum Electronics and Laser Science (QELS), Vol. 57 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper QThF5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental schematic of our EDF based supercontinuum ring laser.

Fig. 2
Fig. 2

Three-dimensional plots of measured spectral evolution of the optical output versus the pump power of an erbium fiber ring laser: (a) cavity composed of both a 5 m EDF and a 2 km HNL-DSF, (b) cavity composed of a 5 m EDF only.

Fig. 3
Fig. 3

Three-dimensional plot of the measured spectral evolution of the optical output versus the pump power for an erbium fiber supercontinuum ring laser composed of both a 20 m EDF and a 2 km HNL-DSF.

Fig. 4
Fig. 4

Measured output optical power versus pump power for ring lasers of four configurations.

Metrics