Abstract

We present a generalized analysis of fiber-based polarization-sensitive optical coherence tomography with an emphasis on determination of sample optic axis orientation. The polarization properties of a fiber-based system can cause an overall rotation in a Poincaré sphere representation such that the plane of possible measured sample optic axes for linear birefringence and diattenuation no longer lies in the QU-plane. The optic axis orientation can be recovered as an angle on this rotated plane, subject to an offset and overall indeterminacy in sign such that only the magnitude, but not the direction, of a change in orientation can be determined. We discuss the accuracy of optic axis determination due to a fundamental limit on the accuracy with which a polarization state can be determined as a function of signal-to-noise ratio.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, T. E. Milner, M. J.C. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997).
    [CrossRef] [PubMed]
  2. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, Opt. Express 3, 212 (1998).
    [CrossRef] [PubMed]
  3. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, Opt. Lett. 23, 228 (1998).
    [CrossRef]
  4. J. F. de Boer, T. E. Milner, and J. S. Nelson, Opt. Lett. 24, 300 (1999).
    [CrossRef]
  5. G. Yao and L. V. Wang, Opt. Lett. 24, 537 (1999).
    [CrossRef]
  6. C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, Opt. Express 9, 780 (2001).
    [CrossRef] [PubMed]
  7. J. F. de Boer and T. E. Milner, J. Biomed. Opt. 7, 359 (2002).
    [CrossRef] [PubMed]
  8. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, Opt. Lett. 25, 1355 (2000).
    [CrossRef]
  9. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, Opt. Express 11, 782 (2003).
    [CrossRef] [PubMed]
  10. S. L. Jiao, G. Yao, and L. V. Wang, Appl. Opt. 39, 6318 (2000).
    [CrossRef]
  11. S. L. Jiao and L. V. Wang, J. Biomed. Opt. 7, 350 (2002).
    [CrossRef] [PubMed]
  12. S. L. Jiao and L. V. Wang, Opt. Lett. 27, 101 (2002).
    [CrossRef]
  13. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, Opt. Lett. 28, 1206 (2003).
    [CrossRef] [PubMed]
  14. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, Opt. Lett. 29, 2512 (2004).
    [CrossRef] [PubMed]
  15. B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, J. Biomed. Opt. 9, 121 (2004).
    [CrossRef] [PubMed]
  16. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Opt. Lett. 26, 1069 (2001).
    [CrossRef]
  17. J. Zhang, S. G. Guo, W. G. Jung, J. S. Nelson, and Z. P. Chen, Opt. Express 11, 3262 (2003).
    [CrossRef] [PubMed]
  18. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, J. Biomed. Opt. 6, 474 (2001).
    [CrossRef] [PubMed]
  19. S. L. Jiao and L. V. Wang, Opt. Lett. 29, 2875 (2004).
    [CrossRef]
  20. M. C. Pierce, B. H. Park, B. Cense, and J. F. de Boer, Opt. Lett. 27, 1534 (2002).
    [CrossRef]
  21. B. H. Park, M. C. Pierce, B. Cense, M. Mujat, and J. F. de Boer, Opt. Express 13, 3931 (2005).
    [CrossRef] [PubMed]
  22. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, Opt. Lett. 27, 1610 (2002).
    [CrossRef]
  23. W. K. Tung, Group Theory in Physics (World Scientific, 1985).
    [CrossRef]
  24. B. H. Park, M. C. Pierce, and J. F. de Boer, Opt. Lett. 29, 2873 (2004).
    [CrossRef]
  25. S. Yazdanfar, C. H. Yang, M. V. Sarunic, and J. A. Izatt, Opt. Express 13, 410 (2005).
    [CrossRef] [PubMed]

2005 (2)

2004 (4)

2003 (3)

2002 (5)

2001 (3)

2000 (2)

1999 (2)

1998 (2)

1997 (1)

Cense, B.

Chen, H. C.

B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, J. Biomed. Opt. 9, 121 (2004).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Z.

Chen, Z. P.

Colston, B. W.

Da Silva, L. B.

de Boer, J. F.

Everett, M. J.

Fercher, A. F.

Gotzinger, E.

Guo, S. G.

Hitzenberger, C. K.

Izatt, J. A.

Jiao, S.

Jiao, S. L.

Jung, W. G.

Kozak, J. A.

Malekafzali, A.

Milner, T. E.

Mujat, M.

Nelson, J. S.

Park, B. H.

Pierce, M. C.

Pircher, M.

Rollins, A. M.

Roth, J. E.

Sarunic, M. V.

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, J. Biomed. Opt. 6, 474 (2001).
[CrossRef] [PubMed]

Saxer, C. E.

Schoenenberger, K.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, J. Biomed. Opt. 6, 474 (2001).
[CrossRef] [PubMed]

J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, Opt. Express 3, 212 (1998).
[CrossRef] [PubMed]

Sticker, M.

Stoica, G.

Tung, W. K.

W. K. Tung, Group Theory in Physics (World Scientific, 1985).
[CrossRef]

van Gemert, M. J.C.

Wang, L. V.

Yang, C. H.

Yao, G.

Yazdanfar, S.

Yu, W.

Zhang, J.

Zhao, Y. H.

Appl. Opt. (1)

J. Biomed. Opt. (4)

J. F. de Boer and T. E. Milner, J. Biomed. Opt. 7, 359 (2002).
[CrossRef] [PubMed]

S. L. Jiao and L. V. Wang, J. Biomed. Opt. 7, 350 (2002).
[CrossRef] [PubMed]

B. Cense, H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, J. Biomed. Opt. 9, 121 (2004).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, J. Biomed. Opt. 6, 474 (2001).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (13)

Other (1)

W. K. Tung, Group Theory in Physics (World Scientific, 1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated optic axis orientation as a function of set orientation relative to 0° (squares, measured orientation; lines, linear fit to the data). As a result of the π-ambiguity (see text) the measured orientation can have both a positive and a negative slope with equal likelihood. Inset, Poincaré sphere representation of the calculated optic axes (arrows) for various set orientations of the tissue sample optic axis. The plane (dashed circle) in which these optic axes lie was determined by least-squares fitting.

Fig. 2
Fig. 2

Angular standard deviation in the Poincaré sphere, Δ θ , as a function of signal-to-noise ratio on a log–log scale for polarization state (squares, standard deviation over 1024 measurements; solid line, theoretical curve, see text) and optic axis determination (dashed line, simulated prediction, see text). Inset, Poincaré sphere illustrating a probability distribution as indicated by a cone defined by the standard deviation, Δ θ .

Metrics