Abstract

A series of optical micrographs showing the front region of fiber fuse damage were obtained to reveal the periodic void formation process. They were collected from a number of samples and were sorted in order of increasing distance between the top of the first large void and the top of the first regular void. The micrographs clearly show that the first large void sheds its tail, which shrinks to form a regular void. This mechanism leads to the formation of bullet-shaped regular voids as the result of the balance between the internal pressure of the optical discharge and the increasing viscosity of the surrounding glass that occurs during pinching off.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
    [CrossRef]
  2. D. P. Hand and P. St. J. Russell, Opt. Lett. 13, 767 (1988).
    [CrossRef] [PubMed]
  3. D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
    [CrossRef]
  4. S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.
  5. E. M. Dianov, I. A. Bufetov, and A. A. Frolov, Opt. Lett. 29, 1852 (2004).
    [CrossRef] [PubMed]
  6. R. M. Atkins, P. G. Simpkins, and A. D. Yablon, Opt. Lett. 28, 974 (2003).
    [CrossRef] [PubMed]
  7. S. I. Yakovlenko, Quantum Electron. 34, 765 (2004).
    [CrossRef]
  8. S. Todoroki, in Proceedings of the 30th European Conference on Optical Communication Post-Deadline Papers (IEEE, 2004), p. 32.
  9. I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.
  10. S. Todoroki, Jpn. J. Appl. Phys., Part 1 44, 4022 (2005).
    [CrossRef]
  11. S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express (to be published).
  12. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, J. Lightwave Technol. 21, 2511 (2003).
    [CrossRef]
  13. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
    [CrossRef]
  14. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

2005

S. Todoroki, Jpn. J. Appl. Phys., Part 1 44, 4022 (2005).
[CrossRef]

2004

S. I. Yakovlenko, Quantum Electron. 34, 765 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, Opt. Lett. 29, 1852 (2004).
[CrossRef] [PubMed]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

2003

1989

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

1988

Asakawa, S.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, J. Lightwave Technol. 21, 2511 (2003).
[CrossRef]

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.

Atkins, R. M.

Birks, T. A.

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

Blow, K. J.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, Opt. Lett. 29, 1852 (2004).
[CrossRef] [PubMed]

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.

Dianov, E. M.

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, Opt. Lett. 29, 1852 (2004).
[CrossRef] [PubMed]

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.

Efremov, V. P.

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.

Fortov, V. E.

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.

Frolov, A. A.

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, Opt. Lett. 29, 1852 (2004).
[CrossRef] [PubMed]

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.

Golyatina, R. I.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

Hand, D. P.

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

D. P. Hand and P. St. J. Russell, Opt. Lett. 13, 767 (1988).
[CrossRef] [PubMed]

Kashyap, R.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Kobayashi, M.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, J. Lightwave Technol. 21, 2511 (2003).
[CrossRef]

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.

Nagase, R.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, J. Lightwave Technol. 21, 2511 (2003).
[CrossRef]

Naruse, R.

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.

Russell, P. St. J.

Shuto, Y.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, J. Lightwave Technol. 21, 2511 (2003).
[CrossRef]

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.

Simpkins, P. G.

Tkachev, A. N.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

Todoroki, S.

S. Todoroki, Jpn. J. Appl. Phys., Part 1 44, 4022 (2005).
[CrossRef]

S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express (to be published).

S. Todoroki, in Proceedings of the 30th European Conference on Optical Communication Post-Deadline Papers (IEEE, 2004), p. 32.

Yablon, A. D.

Yakovlenko, S. I.

S. I. Yakovlenko, Quantum Electron. 34, 765 (2004).
[CrossRef]

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

Yanagi, S.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, J. Lightwave Technol. 21, 2511 (2003).
[CrossRef]

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.

Electron. Lett.

R. Kashyap and K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

D. P. Hand and T. A. Birks, Electron. Lett. 25, 33 (1989).
[CrossRef]

IEEE J. Quantum Electron.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, IEEE J. Quantum Electron. 40, 1113 (2004).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys., Part 1

S. Todoroki, Jpn. J. Appl. Phys., Part 1 44, 4022 (2005).
[CrossRef]

Laser Phys.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14, 1429 (2004).

Opt. Lett.

Quantum Electron.

S. I. Yakovlenko, Quantum Electron. 34, 765 (2004).
[CrossRef]

Other

S. Todoroki, in Proceedings of the 30th European Conference on Optical Communication Post-Deadline Papers (IEEE, 2004), p. 32.

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov, in OFC/NFOEC 2005 Technical Digest on CD ROM (IEEE, 2005), paper OThQ7.

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse, in The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2003), Vol. 1, p. 386.

S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photograph and contour map of optical discharge propagating through a single-mode silica glass fiber pumped by 7.0 W light (top) and their intensity profiles every 4 μ s along the dashed line (bottom).

Fig. 2
Fig. 2

Series of optical micrographs showing the damage generated in 7.0 W pumped fibers, focusing on the voids inside the fiber. The interval of the vertical lines is 20 μ m . The photograph at the bottom is the same as that at the top, shifted 20 μ m to the left.

Fig. 3
Fig. 3

Transformation of the void generated during fiber fuse.

Metrics