Abstract

A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, J. Lightwave Technol. 18, 230 (2000).
    [CrossRef]
  2. Y. Sun, T. Szkopek, and P. W.E. Smith, Opt. Commun. 223, 91 (2003).
    [CrossRef]
  3. J. Bland-Hawthorn, M. Englund, and G. Edvell, Opt. Express 12, 5902 (2004).
    [CrossRef] [PubMed]
  4. Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
    [CrossRef]
  5. F. Ladouceur and J. D. Love, Opt. Quantum Electron. 22, 453 (1990).
    [CrossRef]
  6. D. B. Mortimore and J. W. Arkwright, Appl. Opt. 30, 650 (1991).
    [CrossRef] [PubMed]
  7. J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
    [CrossRef]
  8. R. N. Thurston, E. Kapon, and Y. Silberberg, IEEE J. Quantum Electron. 23, 1245 (1987).
    [CrossRef]
  9. B.-T. Lee and S.-Y. Shin, Opt. Lett. 28, 1660 (2003).
    [CrossRef] [PubMed]
  10. S. G. Leon-Saval, T. A. Birks, N. Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Russell, Opt. Lett. 30, 1629 (2005).
    [CrossRef] [PubMed]
  11. R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
    [CrossRef]
  12. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
    [CrossRef]
  13. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  14. I. Bennion and G. A. Miller (SFA, Inc., Largo, Md., February 2005), separate personal communications.

2005 (2)

2004 (2)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

J. Bland-Hawthorn, M. Englund, and G. Edvell, Opt. Express 12, 5902 (2004).
[CrossRef] [PubMed]

2003 (2)

B.-T. Lee and S.-Y. Shin, Opt. Lett. 28, 1660 (2003).
[CrossRef] [PubMed]

Y. Sun, T. Szkopek, and P. W.E. Smith, Opt. Commun. 223, 91 (2003).
[CrossRef]

2000 (1)

1999 (1)

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

1991 (2)

D. B. Mortimore and J. W. Arkwright, Appl. Opt. 30, 650 (1991).
[CrossRef] [PubMed]

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

1990 (1)

F. Ladouceur and J. D. Love, Opt. Quantum Electron. 22, 453 (1990).
[CrossRef]

1987 (1)

R. N. Thurston, E. Kapon, and Y. Silberberg, IEEE J. Quantum Electron. 23, 1245 (1987).
[CrossRef]

Abramov, A. A.

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

Adnams, R. M.

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

Arkwright, J. W.

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

D. B. Mortimore and J. W. Arkwright, Appl. Opt. 30, 650 (1991).
[CrossRef] [PubMed]

Bennion, I.

I. Bennion and G. A. Miller (SFA, Inc., Largo, Md., February 2005), separate personal communications.

Birks, T. A.

S. G. Leon-Saval, T. A. Birks, N. Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Russell, Opt. Lett. 30, 1629 (2005).
[CrossRef] [PubMed]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

Bland-Hawthorn, J.

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

DiGiovanni, D. J.

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

Ditto, D.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Djambova, T. V.

Edvell, G.

Eggleton, B. J.

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

Englund, M.

Espindola, R. P.

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

George, A. K.

Gupta, S.

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

Joly, N. Y.

Kakarantzas, G.

Kapon, E.

R. N. Thurston, E. Kapon, and Y. Silberberg, IEEE J. Quantum Electron. 23, 1245 (1987).
[CrossRef]

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

Ladouceur, F.

F. Ladouceur and J. D. Love, Opt. Quantum Electron. 22, 453 (1990).
[CrossRef]

Lee, B.-T.

Lee, J.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Leon-Saval, S. G.

Liang, F.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Love, J. D.

F. Ladouceur and J. D. Love, Opt. Quantum Electron. 22, 453 (1990).
[CrossRef]

W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Miller, G. A.

I. Bennion and G. A. Miller (SFA, Inc., Largo, Md., February 2005), separate personal communications.

Mizunami, T.

Mortimore, D. B.

D. B. Mortimore and J. W. Arkwright, Appl. Opt. 30, 650 (1991).
[CrossRef] [PubMed]

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

Niiho, T.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

Reichard, K.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Ruffin, P.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Shin, S.-Y.

Silberberg, Y.

R. N. Thurston, E. Kapon, and Y. Silberberg, IEEE J. Quantum Electron. 23, 1245 (1987).
[CrossRef]

Smith, P. W.E.

Y. Sun, T. Szkopek, and P. W.E. Smith, Opt. Commun. 223, 91 (2003).
[CrossRef]

Snyder, W.

W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

St. J. Russell, P.

S. G. Leon-Saval, T. A. Birks, N. Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Russell, Opt. Lett. 30, 1629 (2005).
[CrossRef] [PubMed]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

Strasser, T. A.

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

Sun, Y.

Y. Sun, T. Szkopek, and P. W.E. Smith, Opt. Commun. 223, 91 (2003).
[CrossRef]

Szkopek, T.

Y. Sun, T. Szkopek, and P. W.E. Smith, Opt. Commun. 223, 91 (2003).
[CrossRef]

Thurston, R. N.

R. N. Thurston, E. Kapon, and Y. Silberberg, IEEE J. Quantum Electron. 23, 1245 (1987).
[CrossRef]

Wadsworth, W. J.

S. G. Leon-Saval, T. A. Birks, N. Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Russell, Opt. Lett. 30, 1629 (2005).
[CrossRef] [PubMed]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

Windeler, R. S.

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

Yang, Y.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Yin, S.

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

R. P. Espindola, R. S. Windeler, A. A. Abramov, B. J. Eggleton, T. A. Strasser, and D. J. DiGiovanni, Electron. Lett. 35, 32 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. N. Thurston, E. Kapon, and Y. Silberberg, IEEE J. Quantum Electron. 23, 1245 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, IEEE Photonics Technol. Lett. 16, 843 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

Y. Sun, T. Szkopek, and P. W.E. Smith, Opt. Commun. 223, 91 (2003).
[CrossRef]

Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, and S. Yin, Opt. Commun. 249, 129 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

F. Ladouceur and J. D. Love, Opt. Quantum Electron. 22, 453 (1990).
[CrossRef]

Other (2)

W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

I. Bennion and G. A. Miller (SFA, Inc., Largo, Md., February 2005), separate personal communications.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) A taper transition between an MMF and several SMFs. Each MMF mode evolves adiabatically into a supermode of weakly coupled SMF cores and distributed between separate SMFs at the output. The process is reversible (SMFs to MMF). (b) An MMF grating device made by inserting SMF gratings between the SMF ports of two transitions. (c) A more manufacturable form of the device, made by tapering a multicore fiber in two places with a low-index jacket to give MMF ports, and writing gratings in the cores in between.

Fig. 2
Fig. 2

(a) An MMF–SMF transition made by drawing a holey ferrule filled with SMFs. (b) Optical micrograph of the ferrule. The solid outer jacket was 260 μ m thick. (c) SEM image of the multimode PCF drawn from the ferrule after the central 19 holes were each filled with an SMF. (d) Photo of a complete transition.

Fig. 3
Fig. 3

(a) Transmission spectrum of the MMF grating device measured when all 19 gratings were at room temperature (solid curve), together with the average (dashed curve) of the 19 SMF gratings as calculated from their data sheets. (b) Same as (a) but measured when 9 of the gratings were heated by 60°C (solid curve), together with the calculated average with 9 of the gratings shifted in wavelength by the measured amount (dashed curve).

Metrics