Abstract

We describe long-period grating inscription in hydrogenated telecom fibers by use of high-intensity femtosecond 352nm laser pulses. We show that this technique allows us to fabricate high-quality 30dB gratings of 300μm period and 2cm length by use of a three-photon absorption mechanism.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  3. V. Bhatia, D. K. Campbell, R. O. Claus, and A. M. Vengsarkar, Opt. Lett. 22, 648 (1997).
    [CrossRef] [PubMed]
  4. A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Opt. 41, 4365 (2002).
    [CrossRef]
  5. A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, Opt. Commun. 246, 107 (2005).
    [CrossRef]
  6. A. Dubietis, G. Tamošauskas, and A. Varanavi?ius, Opt. Commun. 186, 211 (2000).
    [CrossRef]
  7. K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
    [CrossRef]
  8. A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, J. Lightwave Technol. 23, 2568 (2005).
    [CrossRef]
  9. B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
    [CrossRef]
  10. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
    [CrossRef]
  11. M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, Appl. Opt. 43, 1789 (2004).
    [CrossRef] [PubMed]
  12. G. Humbert and A. Malki, Opt. Commun. 208, 329 (2002).
    [CrossRef]
  13. J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono, and H. Kawazoe, Opt. Lett. 20, 1184 (1995).
    [CrossRef] [PubMed]
  14. P. Guenot, MRS Bull. 28, 360 (2003).
    [CrossRef]
  15. S. A. Slattery and D. N. Nikogosyan, Opt. Commun. “Long-period fiber grating inscription under high-intensity 352nm femtosecond irradiation: three photon absorption and energy deposition in cladding,” Opt. Commun. (to be published).
  16. E. M. Dianov, D. S. Starodubov, S. A. Vasiliev, A. A. Frolov, and O. I. Medvedkov, Opt. Lett. 22, 221 (1997).
    [CrossRef] [PubMed]

2005 (2)

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, Opt. Commun. 246, 107 (2005).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, J. Lightwave Technol. 23, 2568 (2005).
[CrossRef]

2004 (1)

2003 (1)

P. Guenot, MRS Bull. 28, 360 (2003).
[CrossRef]

2002 (2)

2001 (1)

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

2000 (3)

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

A. Dubietis, G. Tamošauskas, and A. Varanavi?ius, Opt. Commun. 186, 211 (2000).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
[CrossRef]

1997 (2)

1996 (2)

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

1995 (1)

Anemogiannis, E.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Bachim, B. L.

Bhatia, V.

Braiwish, M. I.

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, Appl. Opt. 43, 1789 (2004).
[CrossRef] [PubMed]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Brambilla, G.

Campbell, D. K.

Chan, H. L. W.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

Chen, K. P.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
[CrossRef]

Choy, C. L.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

Claus, R. O.

Davis, D. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Demokan, M. S.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

Dianov, E. M.

Dragomir, A.

Dubietis, A.

A. Dubietis, G. Tamošauskas, and A. Varanavi?ius, Opt. Commun. 186, 211 (2000).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Frolov, A. A.

Garrett, B. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Gaylord, T. K.

M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, Appl. Opt. 43, 1789 (2004).
[CrossRef] [PubMed]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Glytsis, E. N.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Guan, B. O.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

Guenot, P.

P. Guenot, MRS Bull. 28, 360 (2003).
[CrossRef]

Herman, P. R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
[CrossRef]

Hosono, H.

Humbert, G.

G. Humbert and A. Malki, Opt. Commun. 208, 329 (2002).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kalachev, A. I.

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, Opt. Commun. 246, 107 (2005).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, J. Lightwave Technol. 23, 2568 (2005).
[CrossRef]

Kawazoe, H.

Kitamura, N.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Malki, A.

G. Humbert and A. Malki, Opt. Commun. 208, 329 (2002).
[CrossRef]

McInerney, J. G.

Medvedkov, O. I.

Nikogosyan, D. N.

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, Opt. Commun. 246, 107 (2005).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, J. Lightwave Technol. 23, 2568 (2005).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Opt. 41, 4365 (2002).
[CrossRef]

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. “Long-period fiber grating inscription under high-intensity 352nm femtosecond irradiation: three photon absorption and energy deposition in cladding,” Opt. Commun. (to be published).

Nishii, J.

Pureur, V.

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, Opt. Commun. 246, 107 (2005).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Slattery, S. A.

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. “Long-period fiber grating inscription under high-intensity 352nm femtosecond irradiation: three photon absorption and energy deposition in cladding,” Opt. Commun. (to be published).

Starodubov, D. S.

Tam, H. Y.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

Tam, R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
[CrossRef]

Tamošauskas, G.

A. Dubietis, G. Tamošauskas, and A. Varanavi?ius, Opt. Commun. 186, 211 (2000).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

Varanavicius, A.

A. Dubietis, G. Tamošauskas, and A. Varanavi?ius, Opt. Commun. 186, 211 (2000).
[CrossRef]

Vasiliev, S. A.

Vengsarkar, A. M.

Yamanaka, H.

Zhang, J.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, Electron. Lett. 36, 2000 (2000).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, Electron. Lett. 36, 1354 (2000).
[CrossRef]

J. Lightwave Technol. (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, J. Lightwave Technol. 23, 2568 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, Meas. Sci. Technol. 12, 818 (2001).
[CrossRef]

MRS Bull. (1)

P. Guenot, MRS Bull. 28, 360 (2003).
[CrossRef]

Opt. Commun. (3)

G. Humbert and A. Malki, Opt. Commun. 208, 329 (2002).
[CrossRef]

A. I. Kalachev, V. Pureur, and D. N. Nikogosyan, Opt. Commun. 246, 107 (2005).
[CrossRef]

A. Dubietis, G. Tamošauskas, and A. Varanavi?ius, Opt. Commun. 186, 211 (2000).
[CrossRef]

Opt. Lett. (4)

Other (1)

S. A. Slattery and D. N. Nikogosyan, Opt. Commun. “Long-period fiber grating inscription under high-intensity 352nm femtosecond irradiation: three photon absorption and energy deposition in cladding,” Opt. Commun. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. A 3.3 mm thick crystalline quartz plate was used for a 90° polarization rotation of the 527 nm beam.

Fig. 2
Fig. 2

Transmission loss spectra of LPFGs recorded in (a) H 2 -loaded SMF-28 and (b) H 2 -loaded SMF-28e fibers by high-intensity 352 nm pulses. The incident irradiation intensity and the incident fluence are shown.

Fig. 3
Fig. 3

Photograph of a section of a LPFG recorded in SMF-28e fiber. The longitudinal size of each damaged area is 150 μ m .

Metrics