Abstract

Long-term optical phase-coherent two-color femtosecond pulses were generated by use of passively timing-synchronized Ti:sapphire and Cr:forsterite lasers. The relative carrier-envelope phase relation was fixed by an active feedback loop. The accumulated phase noise from 10mHzto1MHz of the locked beat note was 0.43rad, showing tight phase locking. The optical frequency fluctuation between two femtosecond combs was submillihertz, with a 1s averaged counter measurement over 3400s, leading to a long-term femtosecond frequency-comb connection.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, Opt. Commun. 80, 71 (1990).
    [CrossRef]
  2. A. Bartels, N. R. Newbury, I. Thomann, L. Hollberg, and S. A. Diddams, Opt. Lett. 29, 403 (2004).
    [CrossRef] [PubMed]
  3. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
    [CrossRef] [PubMed]
  4. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, Opt. Lett. 28, 947 (2003).
    [CrossRef] [PubMed]
  5. Y. Kobayashi, K. Torizuka, and Z. Wei, Opt. Lett. 28, 746 (2003).
    [CrossRef] [PubMed]
  6. A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, Opt. Lett. 29, 1081 (2004).
    [CrossRef] [PubMed]
  7. M. Betz, F. Sotier, F. Tauser, S. Trumm, A. Laubereau, and A. Leitenstorfer, Opt. Lett. 29, 629 (2004).
    [CrossRef] [PubMed]
  8. Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Appl. Phys. Lett. 83, 839 (2003).
    [CrossRef]
  9. D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 30, 1408 (2005).
    [CrossRef] [PubMed]
  10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]

2005

2004

2003

2001

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

1990

T. W. Hänsch, Opt. Commun. 80, 71 (1990).
[CrossRef]

Bartels, A.

Betz, M.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

Fujimoto, J. G.

Gopinath, J. T.

Hall, J. L.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. W. Hänsch, Opt. Commun. 80, 71 (1990).
[CrossRef]

Hollberg, L.

Ippen, E. P.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Kaertner, F. X.

Kakehata, M.

D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 30, 1408 (2005).
[CrossRef] [PubMed]

Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Appl. Phys. Lett. 83, 839 (2003).
[CrossRef]

Kapteyn, H. C.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Kim, J.

Kobayashi, Y.

Kolodziejski, L. A.

Kuzucu, O.

Laubereau, A.

Leitenstorfer, A.

Ma, L.-S.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Newbury, N. R.

Oates, C. W.

Petrich, G. S.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Schibli, T. R.

Shelton, R. K.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Sotier, F.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Takada, H.

D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 30, 1408 (2005).
[CrossRef] [PubMed]

Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Appl. Phys. Lett. 83, 839 (2003).
[CrossRef]

Tandon, S. N.

Tauser, F.

Thomann, I.

Torizuka, K.

Trumm, S.

Wei, Z.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Ye, J.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Yoshitomi, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. The EOM and polarizer (Pol.) are inserted into the pumping laser for the Ti:sapphire laser cavity. The radii of curvature of concave mirrors are all 100 mm , and the focal lengths of lenses are 100 mm . HR, high reflector; CM, chirp-compensation mirror; CrF, Cr:forsterite crystal; TiS, Ti:sapphire crystal; OC, output coupler; HM, half-mirror; RF SA, rf spectrum analyzer; LPF, low-pass filter; BPF, bandpass filter; Amp, amplifier; VSA, vector signal analyzer; div, divider, dividing the input frequency by 16; SG, signal generator that generates a 30 MHz reference frequency; PD, phase-frequency comparator; PR, prism.

Fig. 2
Fig. 2

Rf spectrum of the locked beat signal measured by the vector signal analyzer (89441A). The span is 1 Hz , and the resolution bandwidth is 600 μ Hz . The data acquisition time is 1600 s . The linewidth is limited by the RBW ( 600 μ Hz ) .

Fig. 3
Fig. 3

Beat-frequency measurement by a 1 s averaged counter (53132A). The standard deviation over 3400 s is 0.32 mHz . No cycle slip is observed for a long time.

Fig. 4
Fig. 4

Power spectral density and integrated phase noise of the locked beat note measured by the vector signal analyzer (89441A). The integrated phase noise from 10 mHz to 1 MHz is 0.43 rad , which demonstrates the long period of phase coherence. The power spectral density peak at 7 kHz corresponds to the PZT oscillation. The loop bandwidth is about 100 kHz .

Metrics