Abstract

We describe the fabrication and characterization of a free-standing silica glass membrane waveguide formed using fiber fabrication processes. The membrane has a thickness of 0.6μm and a width of 60μm and is many meters long. The optical attenuation is measured as 0.4dBm. Such attenuation outperforms that of conventional planar waveguides by several orders of magnitude.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, E. A.J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
    [CrossRef]
  2. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef]
  3. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  4. J. Buus, IEEE J. Quantum Electron. QE-20, 1106 (1984).
    [CrossRef]
  5. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
    [CrossRef] [PubMed]
  6. N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
    [CrossRef]
  7. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
    [CrossRef] [PubMed]

2005 (1)

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

2003 (3)

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

1984 (1)

J. Buus, IEEE J. Quantum Electron. QE-20, 1106 (1984).
[CrossRef]

1973 (1)

P. Kaiser, E. A.J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Buus, J.

J. Buus, IEEE J. Quantum Electron. QE-20, 1106 (1984).
[CrossRef]

Efimov, A.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
[CrossRef] [PubMed]

Joly, N. Y.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

Kaiser, P.

P. Kaiser, E. A.J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Knight, J. C.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Marcatili, E. A.J.

P. Kaiser, E. A.J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Miller, S. E.

P. Kaiser, E. A.J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

Omenetto, F. G.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
[CrossRef] [PubMed]

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

St. J. Russell, P.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
[CrossRef] [PubMed]

Taylor, A. J.

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 11, 2567 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Bell Syst. Tech. J. (1)

P. Kaiser, E. A.J. Marcatili, and S. E. Miller, Bell Syst. Tech. J. 52, 265 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Buus, IEEE J. Quantum Electron. QE-20, 1106 (1984).
[CrossRef]

Opt. Commun. (1)

N. Y. Joly, F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, and P. St. J. Russell, Opt. Commun. 248, 281 (2005).
[CrossRef]

Opt. Express (1)

Science (2)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) and (b) Scanning electron micrographs of the glass-web fiber. The thickness of the web is 640 nm at 1, 630 nm at 2, and 550 nm at 3, and the width is 63 μ m in all cases.

Fig. 2
Fig. 2

(a) Low- and (b) high-order modes ( m = 10 ) observed at the output of the fiber. The wavelength is 633 nm, and both pictures are at the same scale.

Fig. 3
Fig. 3

Dispersion curves for both polarizations (TM and TE modes) of the fundamental mode in the web fiber.

Fig. 4
Fig. 4

Power-dependent spectrum at the output of the web fiber for (a) TE and (b) TM modes of the web. (c) Spectrum of UV light generated when pumping on the TM polarization state. The power on the x axis is measured at the input. In (b), feature (1) is the residual pump, (2) is the stabilized soliton, and (3) is the Čerenkov resonant radiation.[5] The scale of the photograph of the UV mode in (d), taken at 4 cm of the fiber, is in cm. The web fiber is in the vertical position.

Fig. 5
Fig. 5

Phase matching for the THG in the web fiber. (a), (b), and (c) Calculated effective indices for m values of 0, 1, and 2, respectively. (a) is shifted to the UV ( λ λ 3 ) .

Metrics