Abstract

Pulse compression and pulse-train generation are demonstrated by use of kilowatt 580ps pulses generated by a compact (15cm×3cm×3cm) microchip Q-switched laser followed by a fiber Bragg grating. A 12-fold pulse compression to 45ps with five times peak power enhancement is achieved at 1.4kW through soliton effect compression in the fiber grating. At 2.5kW, modulational instability leads to a train of high-contrast sub-100ps pulses. These demonstrations take advantage of the ultrastrong dispersion at frequencies close to the edge of the photonic bandgap. Experimental results are discussed in the context of the nonlinear Schrödinger equation and are compared with simulations of the nonlinear coupled-mode equations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
    [CrossRef]
  2. R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Academic, 2002).
  3. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
    [CrossRef]
  5. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  6. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
    [CrossRef]
  7. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
    [CrossRef]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  9. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

1999 (1)

1998 (1)

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

1996 (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

1986 (1)

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

1985 (1)

H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
[CrossRef]

1983 (1)

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Aceves, A. B.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

de Sterke, C. M.

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Dianov, E. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Eggleton, B. J.

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Academic, 2002).

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Gordon, J. P.

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Mollenauer, L. F.

Nikonova, Z. S.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Prokhorov, A. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Serkin, V. N.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Shank, C. V.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Sipe, J. E.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Slusher, R. E.

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, J. Opt. Soc. Am. B 16, 587 (1999).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Academic, 2002).

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Strasser, T. A.

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

Tomlinson, W. J.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
[CrossRef]

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Appl. Phys. Lett. (2)

H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, Opt. Commun. 149, 267 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Sov. Tech. Phys. Lett. (1)

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and V. N. Serkin, Sov. Tech. Phys. Lett. 12, 311 (1986).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup and illustration of the spectral response of a fiber Bragg grating. QS, Q-switched. Inset, regions of very high dispersion (hatched) are adjacent to the stop band.

Fig. 2
Fig. 2

Measured transmission spectrum (solid curve) and calculated dispersion (dashed curves) of the fiber grating.

Fig. 3
Fig. 3

Measured grating transmission near the short-wavelength band edge at a launch peak power of 1.4 kW . Inset, output pulses at various detunings.

Fig. 4
Fig. 4

Twelve-fold pulse compression at a launch peak power of 1.4 kW . Top, measured uncompressed (dotted curve) and compressed (solid curve) pulses. Inset, measured spectrum of the compressed output. Bottom, corresponding simulations at δ = 20.0 (dotted curve, NLCME) and 16.7 cm 1 (solid curve, NLCME; dashed curve, NLSE).

Fig. 5
Fig. 5

Measured grating transmission and output pulses (inset) at various detunings at a launch peak power of 2.5 kW .

Fig. 6
Fig. 6

Generation of a train of sub- 100 ps pulses at a launch peak power of 2.5 kW . Top, measured waveforms at δ = 19.5 cm 1 (dotted curve) and 16.6 cm 1 (solid curve). Bottom, corresponding simulations at δ = 20.0 (dotted curve, NLCME) and 16.0 cm 1 (solid curve, NLCME; dashed curve, NLSE).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i V A ± t ± i A ± z + κ A + γ ( A ± 2 + 2 A 2 ) A ± = 0 ,
A z + 1 V g A t + i β 2 2 2 A t 2 = i M γ A 2 A ,

Metrics