Abstract

Near-infrared broadband emission from bismuth–tantalum-codoped germanium oxide glasses was observed at room temperature when the glasses were pumped by an 808 nm laser diode. The emission band covered the O, E, S, C, and L bands (1260–1625 nm), with a maximum peak at 1310nm, a FWHM broader than 400 nm, and a lifetime longer than 200μs. The observed broadband luminescence was attributed to bismuth clusters in the glasses. Bismuth–tantalum-codoped germanium oxide glass might be promising as amplification media for broadly tunable lasers and wideband amplifiers in optical communications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamjada, H. Ono, and Y. Ohishi, Electron. Lett. 34, 1490 (1998).
    [CrossRef]
  2. S. Tanabe, Glastech. Ber. 74C, 67 (2001).
  3. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
    [CrossRef]
  4. T. Suzuki and Y. Ohishi, Appl. Phys. Lett. 84, 3804 (2004).
    [CrossRef]
  5. S. Tanabe and X. Feng, Appl. Phys. Lett. 77, 818 (2000).
    [CrossRef]
  6. Y. Fujimoto and M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003).
    [CrossRef]
  7. Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys., Part 2 40, L279 (2001).
    [CrossRef]
  8. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, Opt. Lett. 29, 1998 (2004).
    [CrossRef] [PubMed]
  9. J. Fu, J. Non-Cryst. Solids 194, 207 (1996).
    [CrossRef]
  10. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
    [CrossRef]
  11. S. Parke and R. S. Webb, J. Phys. Chem. Solids 34, 85 (1973).
    [CrossRef]
  12. M. B. Volf, Chemical Approach to Glass, Vol. 7 of Glass Science and Technology (Elsevier, 1984), pp. 465–469.
  13. A. M. Bishay, Phys. Chem. Glasses 2, 33 (1961).
  14. F. Ahmed and E. Nixon, J. Chem. Phys. 75, 110 (1981).
    [CrossRef]
  15. K. Balasubramanian and D. Liao, J. Chem. Phys. 95, 3064 (1991).
    [CrossRef]

2004 (2)

2003 (2)

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003).
[CrossRef]

2001 (2)

Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys., Part 2 40, L279 (2001).
[CrossRef]

S. Tanabe, Glastech. Ber. 74C, 67 (2001).

2000 (1)

S. Tanabe and X. Feng, Appl. Phys. Lett. 77, 818 (2000).
[CrossRef]

1998 (1)

M. Yamjada, H. Ono, and Y. Ohishi, Electron. Lett. 34, 1490 (1998).
[CrossRef]

1996 (1)

J. Fu, J. Non-Cryst. Solids 194, 207 (1996).
[CrossRef]

1994 (1)

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
[CrossRef]

1991 (1)

K. Balasubramanian and D. Liao, J. Chem. Phys. 95, 3064 (1991).
[CrossRef]

1981 (1)

F. Ahmed and E. Nixon, J. Chem. Phys. 75, 110 (1981).
[CrossRef]

1973 (1)

S. Parke and R. S. Webb, J. Phys. Chem. Solids 34, 85 (1973).
[CrossRef]

1961 (1)

A. M. Bishay, Phys. Chem. Glasses 2, 33 (1961).

Ahmed, F.

F. Ahmed and E. Nixon, J. Chem. Phys. 75, 110 (1981).
[CrossRef]

Balasubramanian, K.

K. Balasubramanian and D. Liao, J. Chem. Phys. 95, 3064 (1991).
[CrossRef]

Bishay, A. M.

A. M. Bishay, Phys. Chem. Glasses 2, 33 (1961).

Blasse, G.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
[CrossRef]

Chen, D.

Dai, S.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Feng, X.

S. Tanabe and X. Feng, Appl. Phys. Lett. 77, 818 (2000).
[CrossRef]

Fu, J.

J. Fu, J. Non-Cryst. Solids 194, 207 (1996).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys., Part 2 40, L279 (2001).
[CrossRef]

Hu, L.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Jiang, X.

Jiang, Z.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Liao, D.

K. Balasubramanian and D. Liao, J. Chem. Phys. 95, 3064 (1991).
[CrossRef]

Meijerink, A.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
[CrossRef]

Meng, X.

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys., Part 2 40, L279 (2001).
[CrossRef]

Nixon, E.

F. Ahmed and E. Nixon, J. Chem. Phys. 75, 110 (1981).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
[CrossRef]

Ohishi, Y.

T. Suzuki and Y. Ohishi, Appl. Phys. Lett. 84, 3804 (2004).
[CrossRef]

M. Yamjada, H. Ono, and Y. Ohishi, Electron. Lett. 34, 1490 (1998).
[CrossRef]

Ono, H.

M. Yamjada, H. Ono, and Y. Ohishi, Electron. Lett. 34, 1490 (1998).
[CrossRef]

Parke, S.

S. Parke and R. S. Webb, J. Phys. Chem. Solids 34, 85 (1973).
[CrossRef]

Peng, M.

Qiu, J.

Suzuki, T.

T. Suzuki and Y. Ohishi, Appl. Phys. Lett. 84, 3804 (2004).
[CrossRef]

Tanabe, S.

S. Tanabe, Glastech. Ber. 74C, 67 (2001).

S. Tanabe and X. Feng, Appl. Phys. Lett. 77, 818 (2000).
[CrossRef]

Volf, M. B.

M. B. Volf, Chemical Approach to Glass, Vol. 7 of Glass Science and Technology (Elsevier, 1984), pp. 465–469.

Webb, R. S.

S. Parke and R. S. Webb, J. Phys. Chem. Solids 34, 85 (1973).
[CrossRef]

Wen, L.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Yamjada, M.

M. Yamjada, H. Ono, and Y. Ohishi, Electron. Lett. 34, 1490 (1998).
[CrossRef]

Yang, J.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Yang, L.

Zhou, Y.

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

Zhu, C.

Zuidema, J.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
[CrossRef]

Appl. Phys. Lett. (3)

T. Suzuki and Y. Ohishi, Appl. Phys. Lett. 84, 3804 (2004).
[CrossRef]

S. Tanabe and X. Feng, Appl. Phys. Lett. 77, 818 (2000).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003).
[CrossRef]

Electron. Lett. (1)

M. Yamjada, H. Ono, and Y. Ohishi, Electron. Lett. 34, 1490 (1998).
[CrossRef]

Glastech. Ber. (1)

S. Tanabe, Glastech. Ber. 74C, 67 (2001).

J. Appl. Phys. (1)

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
[CrossRef]

J. Chem. Phys. (2)

F. Ahmed and E. Nixon, J. Chem. Phys. 75, 110 (1981).
[CrossRef]

K. Balasubramanian and D. Liao, J. Chem. Phys. 95, 3064 (1991).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Fu, J. Non-Cryst. Solids 194, 207 (1996).
[CrossRef]

J. Phys. Chem. Solids (2)

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, J. Phys. Chem. Solids 55, 171 (1994).
[CrossRef]

S. Parke and R. S. Webb, J. Phys. Chem. Solids 34, 85 (1973).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys., Part 2 40, L279 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Glasses (1)

A. M. Bishay, Phys. Chem. Glasses 2, 33 (1961).

Other (1)

M. B. Volf, Chemical Approach to Glass, Vol. 7 of Glass Science and Technology (Elsevier, 1984), pp. 465–469.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A, transmission spectra of GTB and GAB glasses. B, fluorescence spectrum of GTB glass pumped by an 808 nm LD.

Fig. 2
Fig. 2

A, fluorescence decay curve of GTB glass pumped by an 808 nm laser diode. The decay was measured by monitoring the emission at 1310 nm at room temperature. The correlation coefficient of the fit by the first-order exponential decay equation ( I = 1.07977 e t 222 ) is 0.9956. B, integrated fluorescence intensity and lifetime of ( 97 - x ) GeO 2 3 Ta 2 O 5 xBi 2 O 3 ( x = 0.05 , 0.1, 0.5, 1.0, 1.5, 2.0) glass.

Fig. 3
Fig. 3

A, absorption spectra and B, fluorescence spectra of BBPSS glass a, before and b, after γ irradiation from a Co 60 source with a dose of 2.0 × 10 7 rad delivered at a rate of 1.0 × 10 6 rad h when pumped by an 808 nm LD. The peaks with arrows are due to the second-order diffraction of the 808 nm laser.

Metrics