Abstract

We propose a novel method for reducing the diffraction loss in an arrayed-waveguide grating. Our method introduces an interference fringe at the interface between slab and arrayed waveguides to relax the mode mismatch between them. We achieved a loss reduction of more than 0.42 dB with this method. Moreover, we provide an explanation of the loss-reduction mechanism of our method in terms of the point of imaging property of light.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
    [CrossRef]
  2. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
    [CrossRef]
  3. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
    [CrossRef]
  4. Y. P. Li, “Optical device having low insertion loss,” U.S. patent 5,745,618 (April 28, 1998).
  5. C. R. Doerr, R. Pafchek, and L. W. Stulz, IEEE Photon. Technol. Lett. 14, 334 (2002).
    [CrossRef]
  6. C. Dragone, IEEE Photon. Technol. Lett. 14, 1545 (2002).
    [CrossRef]
  7. M. R. Paiam and R. I. MacDonald, Appl. Opt. 36, 5097 (1997).
    [CrossRef] [PubMed]

2004 (2)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

2002 (3)

C. R. Doerr, R. Pafchek, and L. W. Stulz, IEEE Photon. Technol. Lett. 14, 334 (2002).
[CrossRef]

C. Dragone, IEEE Photon. Technol. Lett. 14, 1545 (2002).
[CrossRef]

Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
[CrossRef]

1997 (1)

Doerr, C. R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, IEEE Photon. Technol. Lett. 14, 334 (2002).
[CrossRef]

Dragone, C.

C. Dragone, IEEE Photon. Technol. Lett. 14, 1545 (2002).
[CrossRef]

Hibino, Y.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
[CrossRef]

Himeno, A.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

Itoh, M.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

Kaneko, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

Li, Y. P.

Y. P. Li, “Optical device having low insertion loss,” U.S. patent 5,745,618 (April 28, 1998).

MacDonald, R. I.

Mizuno, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

Oguma, M.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

Ohmori, Y.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

Okamoto, K.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

Pafchek, R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, IEEE Photon. Technol. Lett. 14, 334 (2002).
[CrossRef]

Paiam, M. R.

Shibata, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

Stulz, L. W.

C. R. Doerr, R. Pafchek, and L. W. Stulz, IEEE Photon. Technol. Lett. 14, 334 (2002).
[CrossRef]

Sugita, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

Suzuki, K.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

Takahashi, H.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Hibino, IEEE J. Sel. Top. Quantum Electron. 8, 1090 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, IEEE Photon. Technol. Lett. 16, 1480 (2004).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, IEEE Photon. Technol. Lett. 12, 1180 (2004).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, IEEE Photon. Technol. Lett. 14, 334 (2002).
[CrossRef]

C. Dragone, IEEE Photon. Technol. Lett. 14, 1545 (2002).
[CrossRef]

Other (1)

Y. P. Li, “Optical device having low insertion loss,” U.S. patent 5,745,618 (April 28, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic configuration of the proposed AWG.

Fig. 2
Fig. 2

Optical power distribution at the arrayed waveguides for (a) a conventional AWG and (b) the proposed AWG, obtained with the two-dimensional beam propagation method.

Fig. 3
Fig. 3

Calculated transmittance of conventional and proposed AWGs from the first slab to the arrayed waveguides.

Fig. 4
Fig. 4

Measured transmittance of conventional and proposed AWGs.

Fig. 5
Fig. 5

Spectra of (a) a conventional AWG and (b) the proposed AWG for all output ports.

Fig. 6
Fig. 6

Optical field distribution at the end of the arrayed waveguide of (a) a conventional AWG and (b) the proposed AWG, and the optical power distribution at the end of the output slab of (c) the conventional AWG and (d) the proposed AWG.

Metrics