Abstract

Rapid excitation scans of laser-induced fluorescence (LIF) have been demonstrated. Broadband light was generated in a photonic crystal fiber and transmitted through a long fiber. Due to group-velocity dispersion in the long fiber, a wavelength scan emerged from the fiber in time. The wavelength was swept over approximately one octave in 150ns. The generated light was used to excite LD 700 Perchlorate diluted in methanol. The LIF excitation scan had a spectral resolution of 15nm, and the integrated fluorescence spectrum was found to be within 7% of the integrated absorption spectrum of the dye molecule. The method presented makes possible spatially and spectrally resolved LIF excitation scans with scanning speeds up to the limits set by the excited-state lifetime of the dye molecule.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
    [CrossRef]
  2. J. W. Walewski and S. T. Sanders, Appl. Phys. B 79, 415 (2004).
    [CrossRef]
  3. L. A. Kranendonk, A. W. Caswell, A. M. Myers, and S. T. Sanders, in Combustion and Flow Diagnostics, SP-1784, 2003-01-1116 (Society of Automotive Engineers, 2003).
  4. A. Pertzborn, J. W. Walewski, and S. T. Sanders, “Wavelength-agile source based on a potassium vapor cell and aplication for absorption spectroscopy of iodine,” Opt. Commun. (to be published).
  5. F.-Y. Zhang, T. Fujiwara, and K. Komurasaki, Appl. Opt. 40, 957 (2001).
    [CrossRef]
  6. Blaze Photonics, Ltd., “Compact ultra-bright supercontinuum light source,” http://www.crystal-fibre.com/technology/applications/scg/supercontinuumgeneration_SC-50-1040.pdf (2004).
  7. R. Menzel and E. Thiel, J. Phys. Chem. A 102, 10916 (1998).
    [CrossRef]
  8. J. Coppeta and C. Rogers, Exp. Fluids 25, 1 (1998).
    [CrossRef]

2005

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
[CrossRef]

2004

J. W. Walewski and S. T. Sanders, Appl. Phys. B 79, 415 (2004).
[CrossRef]

2001

1998

R. Menzel and E. Thiel, J. Phys. Chem. A 102, 10916 (1998).
[CrossRef]

J. Coppeta and C. Rogers, Exp. Fluids 25, 1 (1998).
[CrossRef]

Caswell, A. W.

L. A. Kranendonk, A. W. Caswell, A. M. Myers, and S. T. Sanders, in Combustion and Flow Diagnostics, SP-1784, 2003-01-1116 (Society of Automotive Engineers, 2003).

Coppeta, J.

J. Coppeta and C. Rogers, Exp. Fluids 25, 1 (1998).
[CrossRef]

Fujiwara, T.

Kim, T.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
[CrossRef]

Komurasaki, K.

Kranendonk, L. A.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
[CrossRef]

L. A. Kranendonk, A. W. Caswell, A. M. Myers, and S. T. Sanders, in Combustion and Flow Diagnostics, SP-1784, 2003-01-1116 (Society of Automotive Engineers, 2003).

Menzel, R.

R. Menzel and E. Thiel, J. Phys. Chem. A 102, 10916 (1998).
[CrossRef]

Myers, A. M.

L. A. Kranendonk, A. W. Caswell, A. M. Myers, and S. T. Sanders, in Combustion and Flow Diagnostics, SP-1784, 2003-01-1116 (Society of Automotive Engineers, 2003).

Pertzborn, A.

A. Pertzborn, J. W. Walewski, and S. T. Sanders, “Wavelength-agile source based on a potassium vapor cell and aplication for absorption spectroscopy of iodine,” Opt. Commun. (to be published).

Rogers, C.

J. Coppeta and C. Rogers, Exp. Fluids 25, 1 (1998).
[CrossRef]

Sanders, S. T.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
[CrossRef]

J. W. Walewski and S. T. Sanders, Appl. Phys. B 79, 415 (2004).
[CrossRef]

L. A. Kranendonk, A. W. Caswell, A. M. Myers, and S. T. Sanders, in Combustion and Flow Diagnostics, SP-1784, 2003-01-1116 (Society of Automotive Engineers, 2003).

A. Pertzborn, J. W. Walewski, and S. T. Sanders, “Wavelength-agile source based on a potassium vapor cell and aplication for absorption spectroscopy of iodine,” Opt. Commun. (to be published).

Thiel, E.

R. Menzel and E. Thiel, J. Phys. Chem. A 102, 10916 (1998).
[CrossRef]

Walewski, J. W.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
[CrossRef]

J. W. Walewski and S. T. Sanders, Appl. Phys. B 79, 415 (2004).
[CrossRef]

A. Pertzborn, J. W. Walewski, and S. T. Sanders, “Wavelength-agile source based on a potassium vapor cell and aplication for absorption spectroscopy of iodine,” Opt. Commun. (to be published).

Zhang, F.-Y.

Appl. Opt.

Appl. Phys. B

J. W. Walewski and S. T. Sanders, Appl. Phys. B 79, 415 (2004).
[CrossRef]

Exp. Fluids

J. Coppeta and C. Rogers, Exp. Fluids 25, 1 (1998).
[CrossRef]

J. Phys. Chem. A

R. Menzel and E. Thiel, J. Phys. Chem. A 102, 10916 (1998).
[CrossRef]

Proc. Combust. Inst.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, Proc. Combust. Inst. 30, 1619 (2005).
[CrossRef]

Other

L. A. Kranendonk, A. W. Caswell, A. M. Myers, and S. T. Sanders, in Combustion and Flow Diagnostics, SP-1784, 2003-01-1116 (Society of Automotive Engineers, 2003).

A. Pertzborn, J. W. Walewski, and S. T. Sanders, “Wavelength-agile source based on a potassium vapor cell and aplication for absorption spectroscopy of iodine,” Opt. Commun. (to be published).

Blaze Photonics, Ltd., “Compact ultra-bright supercontinuum light source,” http://www.crystal-fibre.com/technology/applications/scg/supercontinuumgeneration_SC-50-1040.pdf (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: L, lens; PD, photodiode; SC, supercontinuum; MF, multimode fiber; OSA, optical spectrum analyzer; PMT, photomultiplier; OSC, oscilloscope.

Fig. 2
Fig. 2

Absorption coefficient of the dye solution (LD 700 Perchlorate in methanol) and the spectral power of the laser field directed into the dye solution. Spectral resolution, 5 nm .

Fig. 3
Fig. 3

Time traces of the output from the dispersion fiber ( I 0 , 1000 averages) and of the excitation scan of LIF from the dye (single shot). Also shown is the dependence of the excitation wavelength on the scan time. Notice that the wavelength is swept over almost one octave.

Fig. 4
Fig. 4

Combined LIF excitation scan (1000 averages) and the absorption coefficient of the dye solution (taken from Fig. 2). The amplitude of the LIF signal was corrected for the optical power of the excitation laser (solid curve) and for the optical power together with the transmission of the laser beam to the measurement volume (dashed–dotted curve). Signals were scaled to that of the absorption coefficient. The approximate time axis for the LIF excitation scan is shown at the top.

Metrics