Abstract

A power analysis of the lossy negative refractive index or left-handed slab lens is described. The presence of vortices in the image plane is revealed with small loss or gain, and these are attributed to the influence of field growth in the evanescent spectrum.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  3. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
    [CrossRef]
  4. M. Nieto-Vesperinas, J. Opt. Soc. Am. A 21, 491 (2004).
    [CrossRef]
  5. V. A. Podolskiy and E. E. Narimanov, Opt. Lett. 30, 75 (2005).
    [CrossRef] [PubMed]
  6. R. Merlin, Appl. Phys. Lett. 84, 1290 (2004).
    [CrossRef]
  7. Z. Ye, Phys. Rev. B 67, 193106 (2003).
    [CrossRef]
  8. X. S. Rao and C. K. Ong, Phys. Rev. E 68, 067601 (2003).
    [CrossRef]
  9. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
    [CrossRef]

2005

2004

M. Nieto-Vesperinas, J. Opt. Soc. Am. A 21, 491 (2004).
[CrossRef]

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

R. Merlin, Appl. Phys. Lett. 84, 1290 (2004).
[CrossRef]

2003

Z. Ye, Phys. Rev. B 67, 193106 (2003).
[CrossRef]

X. S. Rao and C. K. Ong, Phys. Rev. E 68, 067601 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

2000

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1968

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Merlin, R.

R. Merlin, Appl. Phys. Lett. 84, 1290 (2004).
[CrossRef]

Narimanov, E. E.

Nelson, K. A.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Nieto-Vesperinas, M.

Ong, C. K.

X. S. Rao and C. K. Ong, Phys. Rev. E 68, 067601 (2003).
[CrossRef]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Rao, X. S.

X. S. Rao and C. K. Ong, Phys. Rev. E 68, 067601 (2003).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Veselago, V. G.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Ward, D. W.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Webb, K. J.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Yang, M.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Ye, Z.

Z. Ye, Phys. Rev. B 67, 193106 (2003).
[CrossRef]

Appl. Phys. Lett.

R. Merlin, Appl. Phys. Lett. 84, 1290 (2004).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Phys. Rev. B

Z. Ye, Phys. Rev. B 67, 193106 (2003).
[CrossRef]

Phys. Rev. E

X. S. Rao and C. K. Ong, Phys. Rev. E 68, 067601 (2003).
[CrossRef]

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Imaging arrangement with a LH slab. A perfect lens has z i = 2 d .

Fig. 2
Fig. 2

(a) Transfer function with an incident TM ( H y ) field. (b) Normalized power consumption at z = z 0 , S n ( z = z 0 ) , with various slab thicknesses ( d ) and perturbational losses ( δ i ) when z 0 = 0.5 d . Solid curves, exact formulation, and circles, approximations, from Eq. (1) and relation (4).

Fig. 3
Fig. 3

(a) Example profile for the z component of the Poynting vector at the image plane ( z = 2 d ) with a d = λ LH slab. Solid curve, perfect image; squares, δ i = 10 6 ; triangles, δ i = 10 3 ; dashed curve, ideal image from a RH lens. (b) Curl and divergence of the Poynting vector at the d = λ LH lens image plane showing the formation of vortices. The divergence of the Poynting vector is shown as a dashed line, and the curl of the Poynting vector along the y direction is shown for δ i = 10 6 (squares) and δ i = 10 3 (triangles).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τ = ( 1 r 2 ) exp ( i k z d ) 1 r 2 exp ( i 2 k z d ) exp ( i k z d ) ,
τ ζ ( 1 + ζ ) ,
ζ = Δ 2 exp [ 4 π d ( a λ ) ] .
S n ( z = z 0 ) = 2 I { Γ } a ξ exp ( 4 π z 0 a λ ) ,
Γ = 1 exp ( i 2 k z d ) 1 r 2 exp ( i 2 k z d ) r exp ( i 2 k z z 0 )
ξ = 2 ( 1 ζ Δ 2 ) a ( 1 + ζ ) Δ .

Metrics