Abstract

Transformation of an optical transmission mechanism was achieved when the holes of normal silica-guiding microstructure fiber (MF) were filled with nematic liquid crystal (NLC). Moreover, two photonic bandgaps (PBGs) were obtained by using a plane-wave method to create the pattern. The wavelength dependence of the effective mode area, leakage loss, and group velocity dispersion (GVD) has been theoretically investigated by using a full-vector finite-element method with anisotropic perfectly matched layers. The results reveal that the characteristics of the NLC-filled PBG-MFs are particularly wavelength dependent. This research gives a physical insight into the propagation mechanism in MFs and is crucial for future transmission applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
    [CrossRef] [PubMed]
  2. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
    [CrossRef]
  3. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St. J. Russell, and B. J. Mangan, Opt. Express 12, 717 (2004).
    [CrossRef] [PubMed]
  4. J. Jasapara, T.-H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, J. Opt. Soc. Am. B 20, 1611 (2003).
    [CrossRef]
  5. T. T. Alkeskjodd, J. Laegsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, Opt. Express 12, 5857 (2004).
    [CrossRef]
  6. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, Opt. Express 11, 2225 (2003).
    [CrossRef] [PubMed]
  7. L. Vincetti, IEEE Photon. Technol. Lett. 16, 2048 (2004).
    [CrossRef]
  8. M. Yan, H. R. Liu, and P. Shum, in 2004 International Conference on Control, Automation, and Systems (Research Center for Communication and Information Technology, 2004), Vol. 1, p. 656.
  9. M. Yan, P. Shum, and J. Hu, Opt. Lett. 30, 465 (2005).
    [CrossRef] [PubMed]
  10. K. Saitoh and M. Koshiba, Opt. Express 11, 3100 (2003).
    [CrossRef] [PubMed]

2005

2004

2003

Alkeskjodd, T. T.

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Anawati, A.

Bise, R.

Bjarklev, A.

Borreill, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Bouwmans, G.

Broeng, J.

DiGiovanni, D. J.

Digonnet, M. J. F.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Fan, S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Feng, X.

Finazzi, V.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Hand, D. P.

Her, T.-H.

Hermann, D. S.

Hewak, D.

Hu, J.

Jasapara, J.

Jones, J. D. C.

Kim, H. K.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Kino, G. S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Knight, J. C.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Koshiba, M.

Laegsgaard, J.

Li, J.

Liu, H. R.

M. Yan, H. R. Liu, and P. Shum, in 2004 International Conference on Control, Automation, and Systems (Research Center for Communication and Information Technology, 2004), Vol. 1, p. 656.

Mangan, B. J.

Monro, T. M.

Muller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Petropoulos, P.

Russell, P. St. J.

Saitoh, K.

Shephard, J. D.

Shin, J.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

Shum, P.

M. Yan, P. Shum, and J. Hu, Opt. Lett. 30, 465 (2005).
[CrossRef] [PubMed]

M. Yan, H. R. Liu, and P. Shum, in 2004 International Conference on Control, Automation, and Systems (Research Center for Communication and Information Technology, 2004), Vol. 1, p. 656.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Vincetti, L.

L. Vincetti, IEEE Photon. Technol. Lett. 16, 2048 (2004).
[CrossRef]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Windeler, R.

Wu, S.-T.

Yan, M.

M. Yan, P. Shum, and J. Hu, Opt. Lett. 30, 465 (2005).
[CrossRef] [PubMed]

M. Yan, H. R. Liu, and P. Shum, in 2004 International Conference on Control, Automation, and Systems (Research Center for Communication and Information Technology, 2004), Vol. 1, p. 656.

IEEE J. Quantum Electron.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, IEEE J. Quantum Electron. 40, 551 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Vincetti, IEEE Photon. Technol. Lett. 16, 2048 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nature

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borreill, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

M. Yan, H. R. Liu, and P. Shum, in 2004 International Conference on Control, Automation, and Systems (Research Center for Communication and Information Technology, 2004), Vol. 1, p. 656.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of the microstructure fiber.

Fig. 2
Fig. 2

Modal dispersion curve for the fundamental mode of NLC-filled MFs as a function of normalized wavelength.

Fig. 3
Fig. 3

Normalized effective mode area for the fundamental mode of NLC-filled MFs as a function of normalized wavelength.

Fig. 4
Fig. 4

Normalized leakage losses of the fundamental mode as a function of normalized wavelength in the (a) secondary and (b) fundamental gap regions of the MFs before and after filling them with NLC.

Fig. 5
Fig. 5

Normalized GVD of the fundamental mode as a function of normalized wavelength in the (a) secondary and (b) fundamental gap regions of the MFs before and after filling them with NLC.

Metrics